
Through the vertex of the parabola\[{{y}^{2}}=4x\]chords\[OP\]and\[OQ\]are drawn at
right angles to one another. The locus of middle point of\[PQ\]is
(a) \[{{y}^{2}}=x+8\]
(b) \[{{y}^{2}}=-2x+8\]
(c) \[{{y}^{2}}=2x-8\]
(d) \[{{y}^{2}}=x-8\]
Answer
133.5k+ views
Hint: To find the locus of the middle point of two points on the parabola, write the points in parametric form and then find the middle point of the points. Use the fact that the product of slope of any two perpendicular lines is\[-1\].
We have the parabola\[{{y}^{2}}=4x\]. We want to find the locus of middle point of two
points on the parabola such that the chords joining two points of the parabola to its vertex are
perpendicular to each other.
We know that the vertex of parabola of the form\[{{y}^{2}}=4ax\]is\[\left( 0,0 \right)\].
Thus, we have\[\left( 0,0 \right)\]as the vertex of the parabola\[{{y}^{2}}=4x\].

To find the locus of middle point of\[PQ\], let’s write the points in parametric form.
We know that any point of the parabola\[{{y}^{2}}=4ax\] is of the form\[\left( a{{t}^{2}},2at \right)\].
Substituting\[a=1\]in the above equation, we have the two points on our parabola as\[P\left(
{{t}_{1}} \right)=\left( t_{1}^{2},2{{t}_{1}} \right)\]and\[Q\left( {{t}_{2}} \right)=\left(
t_{2}^{2},2{{t}_{2}} \right)\].
We know that the equation of any line passing through origin is of the form\[y=mx\].
Let’s assume that the equation of line joining origin and\[P\left( {{t}_{1}} \right)=\left(
t_{1}^{2},2{{t}_{1}} \right)\]is of the form\[y={{m}_{1}}x\].
Substituting the point\[P\left( {{t}_{1}} \right)=\left( t_{1}^{2},2{{t}_{1}} \right)\]in the equation of
line, we have\[2{{t}_{1}}={{m}_{1}}t_{1}^{2}\].
Thus, we have\[{{m}_{1}}=\dfrac{2}{{{t}_{1}}}\]. \[...\left( 1 \right)\]
Let’s assume that the equation of line joining origin and\[Q\left( {{t}_{2}} \right)=\left(
t_{2}^{2},2{{t}_{2}} \right)\]is of the form\[y={{m}_{2}}x\].
Substituting the point\[Q\left( {{t}_{2}} \right)=\left( t_{2}^{2},2{{t}_{2}} \right)\]in the equation of
line, we have\[2{{t}_{2}}={{m}_{2}}t_{2}^{2}\].
Thus, we have\[{{m}_{2}}=\dfrac{2}{{{t}_{2}}}\]. \[...\left( 2 \right)\]
We know that the two chords passing through\[P\]and\[Q\]are perpendicular, so the product of
their slope is\[-1\].
Using equation\[\left( 1 \right)\]and\[\left( 2 \right)\], we have\[{{m}_{1}}{{m}_{2}}=-1\].
\[\begin{align}
& \Rightarrow \dfrac{2}{{{t}_{1}}}\times \dfrac{2}{{{t}_{2}}}=-1 \\
& \Rightarrow {{t}_{1}}{{t}_{2}}=-4 \\
\end{align}\]
Thus, we can write\[{{t}_{1}}\]as\[{{t}_{1}}=\dfrac{-4}{{{t}_{2}}}\]. \[...\left( 3 \right)\]
We know that the middle point of two points of the form\[\left( {{x}_{1}},{{y}_{1}} \right)\]and\[\left(
{{x}_{2}},{{y}_{2}} \right)\]is\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\].
Substituting\[{{x}_{1}}=t_{1}^{2},{{y}_{1}}=2{{t}_{1}},{{x}_{2}}=t_{2}^{2},{{y}_{2}}=2{{t}_{2}}\]in the
above equation, we have\[\left( \dfrac{t_{1}^{2}+t_{2}^{2}}{2},\dfrac{2{{t}_{1}}+2{{t}_{2}}}{2}
\right)\]as the mid point of the points\[P\left( {{t}_{1}} \right)\]and\[Q\left( {{t}_{2}} \right)\].
Let’s assume\[x=\dfrac{t_{1}^{2}+t_{2}^{2}}{2},y=\dfrac{2{{t}_{1}}+2{{t}_{2}}}{2}\].
Substituting equation\[\left( 3 \right)\]in the above equation, we have\[x=\dfrac{{{\left( \dfrac{-
4}{{{t}_{2}}} \right)}^{2}}+t_{2}^{2}}{2},y=\dfrac{2\left( \dfrac{-4}{{{t}_{2}}} \right)+2{{t}_{2}}}{2}\].
Solving the above equation, we get\[x=\dfrac{{{\left( \dfrac{-4}{{{t}_{2}}}
\right)}^{2}}+t_{2}^{2}}{2}\]and\[y=\dfrac{-4}{{{t}_{2}}}+{{t}_{2}}\].
Squaring the second equation, we get\[{{y}^{2}}={{\left( \dfrac{-4}{{{t}_{2}}} \right)}^{2}}+t_{2}^{2}-
8\].
\[\Rightarrow {{y}^{2}}+8={{\left( \dfrac{-4}{{{t}_{2}}} \right)}^{2}}+t_{2}^{2}\]
Substituting the above equation in\[x=\dfrac{{{\left( \dfrac{-4}{{{t}_{2}}} \right)}^{2}}+t_{2}^{2}}{2}\],
we get\[x=\dfrac{{{\left( \dfrac{-4}{{{t}_{2}}} \right)}^{2}}+t_{2}^{2}}{2}=\dfrac{{{y}^{2}}+8}{2}\].
\[\Rightarrow 2x={{y}^{2}}+8\]
Hence, the correct answer is\[{{y}^{2}}=2x-8\].
Note: It’s necessary to use the fact that the two chords are perpendicular and hence, the product of their slope is\[-1\].
We have the parabola\[{{y}^{2}}=4x\]. We want to find the locus of middle point of two
points on the parabola such that the chords joining two points of the parabola to its vertex are
perpendicular to each other.
We know that the vertex of parabola of the form\[{{y}^{2}}=4ax\]is\[\left( 0,0 \right)\].
Thus, we have\[\left( 0,0 \right)\]as the vertex of the parabola\[{{y}^{2}}=4x\].

To find the locus of middle point of\[PQ\], let’s write the points in parametric form.
We know that any point of the parabola\[{{y}^{2}}=4ax\] is of the form\[\left( a{{t}^{2}},2at \right)\].
Substituting\[a=1\]in the above equation, we have the two points on our parabola as\[P\left(
{{t}_{1}} \right)=\left( t_{1}^{2},2{{t}_{1}} \right)\]and\[Q\left( {{t}_{2}} \right)=\left(
t_{2}^{2},2{{t}_{2}} \right)\].
We know that the equation of any line passing through origin is of the form\[y=mx\].
Let’s assume that the equation of line joining origin and\[P\left( {{t}_{1}} \right)=\left(
t_{1}^{2},2{{t}_{1}} \right)\]is of the form\[y={{m}_{1}}x\].
Substituting the point\[P\left( {{t}_{1}} \right)=\left( t_{1}^{2},2{{t}_{1}} \right)\]in the equation of
line, we have\[2{{t}_{1}}={{m}_{1}}t_{1}^{2}\].
Thus, we have\[{{m}_{1}}=\dfrac{2}{{{t}_{1}}}\]. \[...\left( 1 \right)\]
Let’s assume that the equation of line joining origin and\[Q\left( {{t}_{2}} \right)=\left(
t_{2}^{2},2{{t}_{2}} \right)\]is of the form\[y={{m}_{2}}x\].
Substituting the point\[Q\left( {{t}_{2}} \right)=\left( t_{2}^{2},2{{t}_{2}} \right)\]in the equation of
line, we have\[2{{t}_{2}}={{m}_{2}}t_{2}^{2}\].
Thus, we have\[{{m}_{2}}=\dfrac{2}{{{t}_{2}}}\]. \[...\left( 2 \right)\]
We know that the two chords passing through\[P\]and\[Q\]are perpendicular, so the product of
their slope is\[-1\].
Using equation\[\left( 1 \right)\]and\[\left( 2 \right)\], we have\[{{m}_{1}}{{m}_{2}}=-1\].
\[\begin{align}
& \Rightarrow \dfrac{2}{{{t}_{1}}}\times \dfrac{2}{{{t}_{2}}}=-1 \\
& \Rightarrow {{t}_{1}}{{t}_{2}}=-4 \\
\end{align}\]
Thus, we can write\[{{t}_{1}}\]as\[{{t}_{1}}=\dfrac{-4}{{{t}_{2}}}\]. \[...\left( 3 \right)\]
We know that the middle point of two points of the form\[\left( {{x}_{1}},{{y}_{1}} \right)\]and\[\left(
{{x}_{2}},{{y}_{2}} \right)\]is\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\].
Substituting\[{{x}_{1}}=t_{1}^{2},{{y}_{1}}=2{{t}_{1}},{{x}_{2}}=t_{2}^{2},{{y}_{2}}=2{{t}_{2}}\]in the
above equation, we have\[\left( \dfrac{t_{1}^{2}+t_{2}^{2}}{2},\dfrac{2{{t}_{1}}+2{{t}_{2}}}{2}
\right)\]as the mid point of the points\[P\left( {{t}_{1}} \right)\]and\[Q\left( {{t}_{2}} \right)\].
Let’s assume\[x=\dfrac{t_{1}^{2}+t_{2}^{2}}{2},y=\dfrac{2{{t}_{1}}+2{{t}_{2}}}{2}\].
Substituting equation\[\left( 3 \right)\]in the above equation, we have\[x=\dfrac{{{\left( \dfrac{-
4}{{{t}_{2}}} \right)}^{2}}+t_{2}^{2}}{2},y=\dfrac{2\left( \dfrac{-4}{{{t}_{2}}} \right)+2{{t}_{2}}}{2}\].
Solving the above equation, we get\[x=\dfrac{{{\left( \dfrac{-4}{{{t}_{2}}}
\right)}^{2}}+t_{2}^{2}}{2}\]and\[y=\dfrac{-4}{{{t}_{2}}}+{{t}_{2}}\].
Squaring the second equation, we get\[{{y}^{2}}={{\left( \dfrac{-4}{{{t}_{2}}} \right)}^{2}}+t_{2}^{2}-
8\].
\[\Rightarrow {{y}^{2}}+8={{\left( \dfrac{-4}{{{t}_{2}}} \right)}^{2}}+t_{2}^{2}\]
Substituting the above equation in\[x=\dfrac{{{\left( \dfrac{-4}{{{t}_{2}}} \right)}^{2}}+t_{2}^{2}}{2}\],
we get\[x=\dfrac{{{\left( \dfrac{-4}{{{t}_{2}}} \right)}^{2}}+t_{2}^{2}}{2}=\dfrac{{{y}^{2}}+8}{2}\].
\[\Rightarrow 2x={{y}^{2}}+8\]
Hence, the correct answer is\[{{y}^{2}}=2x-8\].
Note: It’s necessary to use the fact that the two chords are perpendicular and hence, the product of their slope is\[-1\].
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
