
Total number of lone pair electrons in ${{I}_{3}}^{-}$ ion is:
(A) 9
(B) 12
(C) 3
(D) 6
Answer
127.5k+ views
Hint: Before finding the total number of lone pairs, we first need to be able to find if the given ion is ionic or covalent in nature and then we need to see the electronic configuration of the atoms involved. Only then we shall be able to determine the exact number of bonded pairs and lone pairs of electrons.
Complete step by step solution:
-VSEPR theory gives us the information not only of the hybridization and the geometry of the molecule but it also tells us about the exact number of bond pairs and the lone pairs.
-Every atom has a certain number of electrons in their outermost shell which we call the valence electrons and the atoms try to complete their octet by filling their shells. They can do it either by sharing the electrons or by losing/gaining the electrons.
-Electrons are gained/lost when there is a good amount of electronegativity difference between the atoms forming the molecules else they share electrons.
-In the ion given, we see that there is only one type of atom present and its atomic number is 53. So its electronic configuration can be represented as $1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{2}}3{{p}^{6}}4{{s}^{2}}3{{d}^{10}}4{{p}^{6}}5{{s}^{2}}4{{d}^{10}}5{{p}^{5}}$
-If we see the ion given, we see that the atom iodine belongs to is group 7 and so it has 7 electrons in its outermost shell which is also visible from its electronic configuration. Now to complete its octet rule, it has to gain 1 electron only.
-Keeping one I atom at the centre and other 2 bonded to it from left and right sides, we find that the central atom will possess a total 9 electrons now, 7 of its own and 2 from sharing with the adjacent atoms. So, a negative sign appears on that atom to validate octet rule.
-The adjacent I atoms only needed one more electron which they will get by bonding with the centre I atom. Thus there are 2 bonded electrons and rest are lone pair electrons. There were 7 electrons in the adjacent atom, 1 of which takes part in bonding. So now there will remain 6 electrons, thus, 3 electron lone pairs each from the adjacent atom.
-The central atom has 7 electrons and gained 2 electrons from the adjacent atoms and so it has a total 9 electrons and therefore a negative sign. 2 electrons take part in bonding and so it is also left with 6 electrons which means 3 lone pairs.
-Thus we can see that the total number of lone pairs in the whole ion will be 3+3+3=9.
Therefore the correct answer is option (A) 9.

Note: Keep in mind that the shape of the ion can either be linear or bent, both are possible. Both the structures will be the same except for their packing efficiency which will change their melting and boiling point by a slight amount. Their shape comes out as such to keep the lone pairs away from each other as they repel each other. So they are at equatorial positions while atoms at axial positions.
Complete step by step solution:
-VSEPR theory gives us the information not only of the hybridization and the geometry of the molecule but it also tells us about the exact number of bond pairs and the lone pairs.
-Every atom has a certain number of electrons in their outermost shell which we call the valence electrons and the atoms try to complete their octet by filling their shells. They can do it either by sharing the electrons or by losing/gaining the electrons.
-Electrons are gained/lost when there is a good amount of electronegativity difference between the atoms forming the molecules else they share electrons.
-In the ion given, we see that there is only one type of atom present and its atomic number is 53. So its electronic configuration can be represented as $1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{2}}3{{p}^{6}}4{{s}^{2}}3{{d}^{10}}4{{p}^{6}}5{{s}^{2}}4{{d}^{10}}5{{p}^{5}}$
-If we see the ion given, we see that the atom iodine belongs to is group 7 and so it has 7 electrons in its outermost shell which is also visible from its electronic configuration. Now to complete its octet rule, it has to gain 1 electron only.
-Keeping one I atom at the centre and other 2 bonded to it from left and right sides, we find that the central atom will possess a total 9 electrons now, 7 of its own and 2 from sharing with the adjacent atoms. So, a negative sign appears on that atom to validate octet rule.
-The adjacent I atoms only needed one more electron which they will get by bonding with the centre I atom. Thus there are 2 bonded electrons and rest are lone pair electrons. There were 7 electrons in the adjacent atom, 1 of which takes part in bonding. So now there will remain 6 electrons, thus, 3 electron lone pairs each from the adjacent atom.
-The central atom has 7 electrons and gained 2 electrons from the adjacent atoms and so it has a total 9 electrons and therefore a negative sign. 2 electrons take part in bonding and so it is also left with 6 electrons which means 3 lone pairs.
-Thus we can see that the total number of lone pairs in the whole ion will be 3+3+3=9.
Therefore the correct answer is option (A) 9.

Note: Keep in mind that the shape of the ion can either be linear or bent, both are possible. Both the structures will be the same except for their packing efficiency which will change their melting and boiling point by a slight amount. Their shape comes out as such to keep the lone pairs away from each other as they repel each other. So they are at equatorial positions while atoms at axial positions.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Course 2025: Get All the Relevant Details

Total number of lone pair electrons in I3 ion is A class 11 chemistry JEE_Main

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Physics Average Value and RMS Value JEE Main 2025

What is the significance of the Heisenberg uncertainty class 11 chemistry JEE_Main
