Two blocks of masses \[10\,kg\] and $4\,kg$ are connected by a spring of negligible mass and are placed on a frictionless horizontal surface. An impulse gives a speed of $14m/s$ to the heavier block in the direction of the lighter block. then, the velocity of the Centre of mass is:
A) $30\,m{s^{ - 1}}$
B) $20\,m{s^{ - 1}}$
C) $10\,m{s^{ - 1}}$
D) $5\,m{s^{ - 1}}$
Answer
Verified
122.7k+ views
Hint: The mass velocity equation center is the sum of the momentum of each particle mass times velocity divided by the total mass of the system, and we can also calculate the missing quantity in any numerical if any of these two quantities are given by using this formula.
Formula used:
Velocity of center of mass
${V_{CM}} = \dfrac{{{m_1}{v_1} + {m_1}{v_1}}}{{{m_1} + {m_2}}}$
${v_1}$ is the velocity of the first particle,
\[\;{v_2}\;\] is the velocity of the second particle,
$m$ is the total mass of the system.
Complete step by step solution:
Given by,
Mass of the block ${m_1} = 10\,kg$
Mass of the block ${m_2} = 4\,kg$
Velocity of mass ${m_1}$, ${v_1} = 14\,m/s$
Velocity of mass \[{m_2}\] ,${v_2} = 0$
If we assume that all of the system's mass is located in the mass center of the system.
According to the velocity of center of mass,
$\Rightarrow$ ${V_{CM}} = \dfrac{{{m_1}{v_1} + {m_1}{v_1}}}{{{m_1} + {m_2}}}$
Substituting the given value in above equation,
$\Rightarrow$ ${V_{CM}} = \dfrac{{10 \times 14 + 0}}{{10 + 4}}$
On simplifying,
$\Rightarrow$ ${V_{CM}} = \dfrac{{140}}{{14}}$
We get, ${V_{CM}} = 10\,m/s$
Hence, The option C is the correct answer.
Note: When Velocity is an indicator of how much time an object takes to reach a directional destination. If a rigid body is considered, the center of mass may or may not be identical to the geometric center. It is regarded as a reference point for many other mechanical calculations.
Formula used:
Velocity of center of mass
${V_{CM}} = \dfrac{{{m_1}{v_1} + {m_1}{v_1}}}{{{m_1} + {m_2}}}$
${v_1}$ is the velocity of the first particle,
\[\;{v_2}\;\] is the velocity of the second particle,
$m$ is the total mass of the system.
Complete step by step solution:
Given by,
Mass of the block ${m_1} = 10\,kg$
Mass of the block ${m_2} = 4\,kg$
Velocity of mass ${m_1}$, ${v_1} = 14\,m/s$
Velocity of mass \[{m_2}\] ,${v_2} = 0$
If we assume that all of the system's mass is located in the mass center of the system.
According to the velocity of center of mass,
$\Rightarrow$ ${V_{CM}} = \dfrac{{{m_1}{v_1} + {m_1}{v_1}}}{{{m_1} + {m_2}}}$
Substituting the given value in above equation,
$\Rightarrow$ ${V_{CM}} = \dfrac{{10 \times 14 + 0}}{{10 + 4}}$
On simplifying,
$\Rightarrow$ ${V_{CM}} = \dfrac{{140}}{{14}}$
We get, ${V_{CM}} = 10\,m/s$
Hence, The option C is the correct answer.
Note: When Velocity is an indicator of how much time an object takes to reach a directional destination. If a rigid body is considered, the center of mass may or may not be identical to the geometric center. It is regarded as a reference point for many other mechanical calculations.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Exam Pattern 2025
Charging and Discharging of Capacitor
Physics Average Value and RMS Value JEE Main 2025
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Collision - Important Concepts and Tips for JEE
Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
Mechanical Properties of Fluids Class 11 Notes: CBSE Physics Chapter 9
JEE Main 2022 June 29 Shift 2 Question Paper with Answer Keys & Solutions
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Course 2025: Get All the Relevant Details