Answer
Verified
109.2k+ views
Hint: The mass velocity equation center is the sum of the momentum of each particle mass times velocity divided by the total mass of the system, and we can also calculate the missing quantity in any numerical if any of these two quantities are given by using this formula.
Formula used:
Velocity of center of mass
${V_{CM}} = \dfrac{{{m_1}{v_1} + {m_1}{v_1}}}{{{m_1} + {m_2}}}$
${v_1}$ is the velocity of the first particle,
\[\;{v_2}\;\] is the velocity of the second particle,
$m$ is the total mass of the system.
Complete step by step solution:
Given by,
Mass of the block ${m_1} = 10\,kg$
Mass of the block ${m_2} = 4\,kg$
Velocity of mass ${m_1}$, ${v_1} = 14\,m/s$
Velocity of mass \[{m_2}\] ,${v_2} = 0$
If we assume that all of the system's mass is located in the mass center of the system.
According to the velocity of center of mass,
$\Rightarrow$ ${V_{CM}} = \dfrac{{{m_1}{v_1} + {m_1}{v_1}}}{{{m_1} + {m_2}}}$
Substituting the given value in above equation,
$\Rightarrow$ ${V_{CM}} = \dfrac{{10 \times 14 + 0}}{{10 + 4}}$
On simplifying,
$\Rightarrow$ ${V_{CM}} = \dfrac{{140}}{{14}}$
We get, ${V_{CM}} = 10\,m/s$
Hence, The option C is the correct answer.
Note: When Velocity is an indicator of how much time an object takes to reach a directional destination. If a rigid body is considered, the center of mass may or may not be identical to the geometric center. It is regarded as a reference point for many other mechanical calculations.
Formula used:
Velocity of center of mass
${V_{CM}} = \dfrac{{{m_1}{v_1} + {m_1}{v_1}}}{{{m_1} + {m_2}}}$
${v_1}$ is the velocity of the first particle,
\[\;{v_2}\;\] is the velocity of the second particle,
$m$ is the total mass of the system.
Complete step by step solution:
Given by,
Mass of the block ${m_1} = 10\,kg$
Mass of the block ${m_2} = 4\,kg$
Velocity of mass ${m_1}$, ${v_1} = 14\,m/s$
Velocity of mass \[{m_2}\] ,${v_2} = 0$
If we assume that all of the system's mass is located in the mass center of the system.
According to the velocity of center of mass,
$\Rightarrow$ ${V_{CM}} = \dfrac{{{m_1}{v_1} + {m_1}{v_1}}}{{{m_1} + {m_2}}}$
Substituting the given value in above equation,
$\Rightarrow$ ${V_{CM}} = \dfrac{{10 \times 14 + 0}}{{10 + 4}}$
On simplifying,
$\Rightarrow$ ${V_{CM}} = \dfrac{{140}}{{14}}$
We get, ${V_{CM}} = 10\,m/s$
Hence, The option C is the correct answer.
Note: When Velocity is an indicator of how much time an object takes to reach a directional destination. If a rigid body is considered, the center of mass may or may not be identical to the geometric center. It is regarded as a reference point for many other mechanical calculations.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main