
Two blocks of masses \[10\,kg\] and $4\,kg$ are connected by a spring of negligible mass and are placed on a frictionless horizontal surface. An impulse gives a speed of $14m/s$ to the heavier block in the direction of the lighter block. then, the velocity of the Centre of mass is:
A) $30\,m{s^{ - 1}}$
B) $20\,m{s^{ - 1}}$
C) $10\,m{s^{ - 1}}$
D) $5\,m{s^{ - 1}}$
Answer
232.8k+ views
Hint: The mass velocity equation center is the sum of the momentum of each particle mass times velocity divided by the total mass of the system, and we can also calculate the missing quantity in any numerical if any of these two quantities are given by using this formula.
Formula used:
Velocity of center of mass
${V_{CM}} = \dfrac{{{m_1}{v_1} + {m_1}{v_1}}}{{{m_1} + {m_2}}}$
${v_1}$ is the velocity of the first particle,
\[\;{v_2}\;\] is the velocity of the second particle,
$m$ is the total mass of the system.
Complete step by step solution:
Given by,
Mass of the block ${m_1} = 10\,kg$
Mass of the block ${m_2} = 4\,kg$
Velocity of mass ${m_1}$, ${v_1} = 14\,m/s$
Velocity of mass \[{m_2}\] ,${v_2} = 0$
If we assume that all of the system's mass is located in the mass center of the system.
According to the velocity of center of mass,
$\Rightarrow$ ${V_{CM}} = \dfrac{{{m_1}{v_1} + {m_1}{v_1}}}{{{m_1} + {m_2}}}$
Substituting the given value in above equation,
$\Rightarrow$ ${V_{CM}} = \dfrac{{10 \times 14 + 0}}{{10 + 4}}$
On simplifying,
$\Rightarrow$ ${V_{CM}} = \dfrac{{140}}{{14}}$
We get, ${V_{CM}} = 10\,m/s$
Hence, The option C is the correct answer.
Note: When Velocity is an indicator of how much time an object takes to reach a directional destination. If a rigid body is considered, the center of mass may or may not be identical to the geometric center. It is regarded as a reference point for many other mechanical calculations.
Formula used:
Velocity of center of mass
${V_{CM}} = \dfrac{{{m_1}{v_1} + {m_1}{v_1}}}{{{m_1} + {m_2}}}$
${v_1}$ is the velocity of the first particle,
\[\;{v_2}\;\] is the velocity of the second particle,
$m$ is the total mass of the system.
Complete step by step solution:
Given by,
Mass of the block ${m_1} = 10\,kg$
Mass of the block ${m_2} = 4\,kg$
Velocity of mass ${m_1}$, ${v_1} = 14\,m/s$
Velocity of mass \[{m_2}\] ,${v_2} = 0$
If we assume that all of the system's mass is located in the mass center of the system.
According to the velocity of center of mass,
$\Rightarrow$ ${V_{CM}} = \dfrac{{{m_1}{v_1} + {m_1}{v_1}}}{{{m_1} + {m_2}}}$
Substituting the given value in above equation,
$\Rightarrow$ ${V_{CM}} = \dfrac{{10 \times 14 + 0}}{{10 + 4}}$
On simplifying,
$\Rightarrow$ ${V_{CM}} = \dfrac{{140}}{{14}}$
We get, ${V_{CM}} = 10\,m/s$
Hence, The option C is the correct answer.
Note: When Velocity is an indicator of how much time an object takes to reach a directional destination. If a rigid body is considered, the center of mass may or may not be identical to the geometric center. It is regarded as a reference point for many other mechanical calculations.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

