Two point charges with charges $3$ micro coulombs and $4$ micro coulombs are separated by $2\;cm$. The value of the force between them?
(A) $600\;N$
(B) $300\;N$
(C) $540\;N$
(D) $270\;N$
(E) $400\;N$
Answer
Verified
116.1k+ views
Hint: We have two point charges having $3$ micro coulomb and $4$ micro coulomb each. The distance between both the charges is given by $2\;cm$. We have to find the force between them. This question is a direct application of Coulomb’s law and can be easily solved by applying coulomb’s law. The values are all given.
Formula used:
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{Q_1}{Q_2}}}{{{r^2}}}$
where, $F$ stands for the force between the two charges, ${\varepsilon _0}$ is the permittivity of free space, ${Q_1}$ and ${Q_2}$ are the two charges and $r$ stands for the distance between the two charges.
Complete step by step solution:
Both charges are separated by a distance.
The value of the first charge is given as, ${Q_1} = 3\mu C$
Converting into Coulomb by multiplying with ${10^{ - 6}}$, ${Q_1} = 3 \times {10^{ - 6}}C$
The value of the second charge is given as, ${Q_2} = 4\mu C$
Converting into Coulomb by multiplying with ${10^{ - 6}}$, ${Q_2} = 4 \times {10^{ - 6}}$
The distance between both charges is given as, $r = 2cm = 0.02m$
Coulomb’s law is given by,
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{Q_1}{Q_2}}}{{{r^2}}}$
Substituting the values within the above equation, we get
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{\left( {3 \times {{10}^{ - 6}}} \right) \times \left( {4 \times {{10}^{ - 6}}} \right)}}{{{{\left( {0.02} \right)}^2}}}$
The value of $\dfrac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}N{m^2}{C^{ - 2}}$
Substituting within the above equation, we get
$F = \dfrac{{9 \times {{10}^9} \times \left( {3 \times {{10}^{ - 6}}} \right) \times \left( {4 \times {{10}^{ - 6}}} \right)}}{{\left( {0.02} \right)}} = 270N$
The answer is: Option (D): $270\;N$
Additional Information:
The magnitude of coulomb charges will depend on three factors that are the distance between the charges, the number of charges, and the nature of the media between the charges. Positive charges are attractive in nature meanwhile negative charges are repulsive in nature.
Note: Coulomb’s law states that the force of attraction or repulsion between two point charges is directly proportional to the product of charges and inversely proportional to the square of the distance between them. Like charges will have a repulsive force between them and unlike charges will have an attractive force between them.
Formula used:
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{Q_1}{Q_2}}}{{{r^2}}}$
where, $F$ stands for the force between the two charges, ${\varepsilon _0}$ is the permittivity of free space, ${Q_1}$ and ${Q_2}$ are the two charges and $r$ stands for the distance between the two charges.
Complete step by step solution:
Both charges are separated by a distance.
The value of the first charge is given as, ${Q_1} = 3\mu C$
Converting into Coulomb by multiplying with ${10^{ - 6}}$, ${Q_1} = 3 \times {10^{ - 6}}C$
The value of the second charge is given as, ${Q_2} = 4\mu C$
Converting into Coulomb by multiplying with ${10^{ - 6}}$, ${Q_2} = 4 \times {10^{ - 6}}$
The distance between both charges is given as, $r = 2cm = 0.02m$
Coulomb’s law is given by,
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{Q_1}{Q_2}}}{{{r^2}}}$
Substituting the values within the above equation, we get
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{\left( {3 \times {{10}^{ - 6}}} \right) \times \left( {4 \times {{10}^{ - 6}}} \right)}}{{{{\left( {0.02} \right)}^2}}}$
The value of $\dfrac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}N{m^2}{C^{ - 2}}$
Substituting within the above equation, we get
$F = \dfrac{{9 \times {{10}^9} \times \left( {3 \times {{10}^{ - 6}}} \right) \times \left( {4 \times {{10}^{ - 6}}} \right)}}{{\left( {0.02} \right)}} = 270N$
The answer is: Option (D): $270\;N$
Additional Information:
The magnitude of coulomb charges will depend on three factors that are the distance between the charges, the number of charges, and the nature of the media between the charges. Positive charges are attractive in nature meanwhile negative charges are repulsive in nature.
Note: Coulomb’s law states that the force of attraction or repulsion between two point charges is directly proportional to the product of charges and inversely proportional to the square of the distance between them. Like charges will have a repulsive force between them and unlike charges will have an attractive force between them.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025