
Under Which of the following condition is the relation,
$\Delta H = \Delta U + P\Delta V$ valid for a closed system?
A. Constant pressure
B. Constant temperature
C. Constant temperature and pressure
D. Constant temperature, pressure and composition
Answer
140.4k+ views
Hint: The equation \[\Delta H = \Delta U + P.\Delta V\]comes from the first law of thermodynamics.
At constant temperature internal energy of the system remains constant.
Complete step by step answer:
Internal energy of a system is basically the sum of kinetic energy and potential energy of the particles present in that system. In case of ideal gas as the particles do not interact with each other, so the total internal energy is due the kinetic energy of the system.
Enthalpy is the transfer of energy in a chemical reaction or a system. Enthalpy of a system is the sum of internal energy of the system plus the product of pressure and volume of the system.
\[H = U + PV\]
If we calculate the change in enthalpy of the system, then
\[\Delta H = \Delta U + \Delta (PV)\]
\[\Delta H = \Delta U + \Delta P.V + P.\Delta V\]
At constant temperature,$\Delta T = 0$ this implies that the change in internal energy is also equal to $0$ or, $\Delta U = 0$. So, the above equation will become \[\Delta H = \Delta P.V + P.\Delta V\].
At constant pressure, \[\Delta P = 0\]. So, the equation will be \[\Delta H = \Delta U + P.\Delta V\].
Basically, the equation \[\Delta H = \Delta U + P.\Delta V\]comes from the first law of thermodynamics. The first law of thermodynamics states that change in heat energy of the system is equal to the sum of change in internal energy of the system and work done by the system. At constant pressure, change in enthalpy is equal to the change in heat energy of the system and \[P.\Delta V\] is the work done by the system.
At constant temperature and pressure, both $\Delta T = 0$ and \[\Delta P = 0\]. Which implies that \[\Delta H = P.\Delta V\].
So, the equation \[\Delta H = \Delta U + P.\Delta V\]is valid at constant pressure only for a closed system.
Hence, the correct answer is \[\left( A \right)\].
Note:
If a system is maintained at constant temperature it is called isothermal, at constant pressure it is called isobaric, at constant volume it is called isochoric and at constant heat it is called adiabatic.
At constant temperature internal energy of the system remains constant.
Complete step by step answer:
Internal energy of a system is basically the sum of kinetic energy and potential energy of the particles present in that system. In case of ideal gas as the particles do not interact with each other, so the total internal energy is due the kinetic energy of the system.
Enthalpy is the transfer of energy in a chemical reaction or a system. Enthalpy of a system is the sum of internal energy of the system plus the product of pressure and volume of the system.
\[H = U + PV\]
If we calculate the change in enthalpy of the system, then
\[\Delta H = \Delta U + \Delta (PV)\]
\[\Delta H = \Delta U + \Delta P.V + P.\Delta V\]
At constant temperature,$\Delta T = 0$ this implies that the change in internal energy is also equal to $0$ or, $\Delta U = 0$. So, the above equation will become \[\Delta H = \Delta P.V + P.\Delta V\].
At constant pressure, \[\Delta P = 0\]. So, the equation will be \[\Delta H = \Delta U + P.\Delta V\].
Basically, the equation \[\Delta H = \Delta U + P.\Delta V\]comes from the first law of thermodynamics. The first law of thermodynamics states that change in heat energy of the system is equal to the sum of change in internal energy of the system and work done by the system. At constant pressure, change in enthalpy is equal to the change in heat energy of the system and \[P.\Delta V\] is the work done by the system.
At constant temperature and pressure, both $\Delta T = 0$ and \[\Delta P = 0\]. Which implies that \[\Delta H = P.\Delta V\].
So, the equation \[\Delta H = \Delta U + P.\Delta V\]is valid at constant pressure only for a closed system.
Hence, the correct answer is \[\left( A \right)\].
Note:
If a system is maintained at constant temperature it is called isothermal, at constant pressure it is called isobaric, at constant volume it is called isochoric and at constant heat it is called adiabatic.
Recently Updated Pages
Types of Solutions - Solution in Chemistry

Difference Between Crystalline and Amorphous Solid

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Number of sigma and pi bonds in C2 molecule isare A class 11 chemistry JEE_Main

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

Thermodynamics Class 11 Notes: CBSE Chapter 5
