
Which application uses differentiator?
Answer
138.6k+ views
Hint: First recall the definition of the differential operator then write the name of the field where the differential operator is used.
1) The differentiation of a function f(x) with respect to x denotes the rate of change of f(x) in time x.
Now, the differentiator is used in analog computers and frequency modulators.
2) The differentiation of a function f(x) with respect to x denotes the slope of the tangent of the curve.
3) Using the derivative of the function we can find the increasing or decreasing interval:
If the derivative of the function f(x) is greater than zero in the interval (a,b), then the function is increasing in the interval (a,b).
If the derivative of the function f(x) is less than zero in the interval (a,b), then the function is decreasing in the interval (a,b).
4) Maxima and minima:
If the double derivative of a function f(x) is less than zero at x=a, then the function has local maxima at x = a
If the double derivative of a function f(x) is greater than zero at x=a, then the function has local minima at x = a
The differentiator is used in analog computers and frequency modulators.
Notes Sometime students did not find any field where a differentiator is used then they write any mathematical equation as an application which is not correct, here we need to write where we use the differentiator other than solving problems.
1) The differentiation of a function f(x) with respect to x denotes the rate of change of f(x) in time x.
Now, the differentiator is used in analog computers and frequency modulators.
2) The differentiation of a function f(x) with respect to x denotes the slope of the tangent of the curve.
3) Using the derivative of the function we can find the increasing or decreasing interval:
If the derivative of the function f(x) is greater than zero in the interval (a,b), then the function is increasing in the interval (a,b).
If the derivative of the function f(x) is less than zero in the interval (a,b), then the function is decreasing in the interval (a,b).
4) Maxima and minima:
If the double derivative of a function f(x) is less than zero at x=a, then the function has local maxima at x = a
If the double derivative of a function f(x) is greater than zero at x=a, then the function has local minima at x = a
The differentiator is used in analog computers and frequency modulators.
Notes Sometime students did not find any field where a differentiator is used then they write any mathematical equation as an application which is not correct, here we need to write where we use the differentiator other than solving problems.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Formula for Mean Deviation For Ungrouped Data

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

Physics Average Value and RMS Value JEE Main 2025

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
