Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Hexadecimal Number System

Reviewed by:
ffImage
hightlight icon
highlight icon
highlight icon
share icon
copy icon
SearchIcon

What is a Number System?

A System of writing or denoting a Number is called a Number System. Number System is a Mathematical notation for portraying the Numbers using several symbols and digits. In Mathematics, there are two types of Number Systems. They are positional Number Systems and non-positional Number Systems. A non positional System is a Number System in which the value of a digit does not vary with its position. However, in the positional Number System, the value of a digit depends on its position in the Number. Hexadecimal Number System is a positional Number System. 


Hexadecimal Number System:

The value of any digit in positional Number System depends on the following:

  • The digit whose value is to be determined

  • Position of the digit in the Number

  • Base or radix of the Number System

The Hexadecimal Number System has the base as 16 (hexa = 6 and deci = 10). So it is also called the base 16 Number System. In this Number System, there are 16 digits which are used in representing Numbers in Hexadecimal form. It is similar to the Decimal Number System because the first 10 digits remain the same in both the Number Systems. However, 10 in the Decimal Number System is represented as A in the Hexadecimal System, 11 as B, 12 as C, 13 as D, 14 as E, 15 as F and 16 as 10. So the 16 digits of the Hexadecimal Number System are 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.


Place Value of Digits in Hexadecimal Number System:

A Hexadecimal Number has two parts namely the integer part and the fraction part. Integer part includes the Number to the left of the Decimal point and the fraction part indicates the digits to the right of the Decimal point. The digits of a Number in Hexadecimal form has a weightage in powers of 16. The power of 16 increases as the digit is towards the left of the Decimal point whereas the power decreases as the digit is towards the right of the Decimal point.


(Image will be Uploaded soon)


Example: (9AB.47)16 is a Hexadecimal Number

The Number is written in expanded form as 

9 x 162 x A x 161 + B x 160 + 4 x 16-1 + 7 x 16-2


Hexadecimal Conversion Table:

Hexadecimal Numbers can also be represented in Binary, Octal and Decimal form. The table below denotes the representation of a Hexadecimal digit in other forms.


Hexadecimal Digit

Decimal Equivalent

Binary Equivalent

0

0

0000

1

1

0001

2

2

0010

3

3

0011

4

4

0100

5

5

0101

6

6

0110

7

7

0111

8

8

1000

9

9

1001

A

10

1010

B

11

1011

C

12

1100

D

13

1101

E

14

1110

F

15

1111


Conversion of Numbers in other Positional Systems to Hexadecimal Form:

Decimal to Hexadecimal Number System:

The Decimal Number is divided by 16 and the Hexadecimal equivalent of the remainder is noted. The quotient obtained is again divided by 16 and the Hexadecimal equivalent of the remainder is noted. The division is further continued till the quotient is equal to 0. The Number in Hexadecimal form is the remainders written from bottom to top. 

Example:

Convert the base 10 Number 242 into Hexadecimal form. 

Solution:

16

242

16

15


0


2 ⟶ 2

15 ⟶ F

(242)10 = (F2)16


Binary to Hexadecimal Conversion:

To convert a Binary Number into Hexadecimal form, the digits are first separated into groups of 4 from the Decimal point towards the right and the left. The left out digits are appended with the required Number of zeroes to form a group of 4 Binary digits. Each group of 4 Binary digits is replaced with a single Hexadecimal equivalent as depicted in the conversion table.

Example:

Convert (1010001011.10101001111)2 into Hexadecimal Number

Solution:

The integer part is grouped as 0010 1000 1011. Its Hexadecimal equivalent is (28B)16

The fraction part is grouped as 1010 1001 1110. Its Hexadecimal equivalent is (A9E)16

So the Number in Hexadecimal form is (28B. A9E)16


Octal to Hexadecimal Conversion:

Any Octal Number is first converted to Decimal form. The Decimal Number obtained is converted into a Hexadecimal Number using the method explained above. 

Example:

Convert (121)8 into Hexadecimal form.

Solution:

(121)8 is converted into Decimal form by multiplying each digit by its positional value of 8.

(121)8 = 1x 82 + 2 x 81 + 1 x 80 = 64 + 16 + 1 = (81)10

81 is then converted to Hexadecimal form as follows:

16

81

16

5


0


1 ⟶ 1

5 ⟶ 5

So (121)8 = (51)16


Hexadecimal to Decimal Conversion:

Any Number in Hexadecimal form is converted into its Decimal equivalent by multiplying each digit with its positional values of 16. 

Example:

Convert (AB4)16 into Decimal Number.

Solution:

(AB4)16 = A x 162 + B x 161 + 4 x 160 = 10 x 64 + 11 x 16 + 4 x 1 = (820)10


Hexadecimal to Binary Conversion:

A Hexadecimal Number is converted into a Binary Number by writing the 4 digit Binary equivalent of each Hexadecimal digit in the Number by looking into the conversion table. 

Example:

Convert (C7D)16 into base 2 Number.

Solution:

Binary equivalent of 

C => 1100

7 => 0111

D => 1101

So (C7D)16 = (110001111101)2 


Hexadecimal to Octal Conversion:

A Hexadecimal digit can be converted into Octal form by first converting it into a Decimal Number and then writing its Octal equivalent. 

Example:

Convert (AB4)16 into Octal Number.

Solution:

(AB4)16 is first converted into Decimal form by multiplying each digit with the positional values.

(AB4)16 = A x 162 + B x 161 + 4 x 160 = 10 x 64 + 11 x 16 + 4 x 1 = (820)10

The Number is then converted to Octal form by dividing it by 8 and noting down the remainders. The remainder from bottom to top is the Octal equivalent.

The Number obtained by dividing 820 and noting down the remainders is 1464

So, (AB4)16 = (1464)8 


Fun Facts:

  • An Octal Number can also be converted into Hexadecimal form by first converting it into a Binary equivalent. The Binary equivalent can be divided into groups of 3 and their Octal equivalent can be written using the Binary to Octal conversion table.


Octal Digit

0

1

2

3

4

5

6

7

Binary Equivalent

000

001

010

011

100

101

110

111


Similarly, a Hexadecimal Number can be converted into Octal form by converting it into a Binary Number. The Binary Number is then divided into groups of three digits and their Octal equivalent is written using the above conversion table.


Disadvantages of using Hexadecimal System

In the Hexadecimal System, 16 digits ranging from 0 to 9 and A to F, are used to represent any Number. The Hexadecimal System is preferred over any other System as it saves space in representing larger Numbers. However, there are some disadvantages too of using the Hexadecimal System, which is as follows:

  • Difficult to read and write

  • Troublesome for operations like multiplication and division 

  • Is the most difficult language while dealing with computer data


Representation of Hexadecimal Digits

Hexadecimal Digit

Equivalent Number into Decimal

Equivalent Binary Number

0

0

0000

1

1

0001

2

2

0010

3

3

0011

4

4

0100

5

5

0101

6

6

0110

7

7

0111

8

8

1000

9

9

1001

A

10

1010

B

11

1011

C

12

1100

D

13

1101

E

14

1110

F

15

1111


Practice Questions

1. Convert the following Hexadecimal Numbers into Binary Numbers:

  1. (67F)16 

  2. (76)16

  3. (AE5)16

  4. (5C2)16

  5. (58B)16

This was all about the Hexadecimal Number System. For more such information, access free resources available on the Vedantu website useful for the state board, CBSE, ICSE, and competitive examinations. All NCERT Solutions for all subjects are available on the Vedantu website.

FAQs on Hexadecimal Number System

1. Where are Hexadecimal Numbers Used by Programmers?

  • Hexadecimal Numbers are used to define locations in memory units of the System. Every byte can be defined as a two digit Hexadecimal Number instead of an eight digit Binary Number.

  • Hexadecimal Numbers are also used to represent the colors like red, green and blue on the webpages. 

  • MAC (Media Access Control) addresses are denoted by a 12 digit Hexadecimal Number. The first six digits is the ID of the adapter manufacturer and the last 6 digits is the adapter serial Number. 

  • Programmers can easily debug the errors in their program using the Hexadecimal error code indicating the memory location of the error.

2. What are the Advantages of Hexadecimal Number Systems?

Hexadecimal Number System is widely used in computer based applications. 

  • The Hexadecimal Number System is precise. The Number of digits used in the base 16 Number System is less compared to Decimal, Octal and Binary Systems. Hence, large information can be stored in less space. 

  • The conversion of Hexadecimal Numbers to other Number System forms is also easier. It can be used to write a lengthy Binary Number in fewer digits.

  • This Number System is more user friendly as it helps in grouping the Binary digits. Using a lesser Number of digits also decreases the probability of errors.

3. What are Hexadecimal digits?

In a Hexadecimal Number System, there are 16 digits used. The range of the 16 digits is from 0 to 15. That is there are 16 possible digits used in this System to represent the Numbers. The Hexadecimal digits are 1,2,3,4,5,6,7,8,9, A,B, C,D, E,F.  Each Hexadecimal Number represents a 4-bit Binary sequence Number. In technical terms, it is easier to write Hexadecimal Numbers than writing a Binary Number. Two Hexadecimal digits can represent 8 Binary digits or a byte.

4. Is memory addressed in a Hexadecimal System?

In the Hexadecimal System, 16 digits are used to represent any Number. The Hexadecimal digits range from 0 to 9 and A to F. The memory addresses used in any electronic device are represented using 2 hex Numbers. The memory address contains two parts that are the segment value and offset value. The offset value of the memory address can contain as many as 4 hex digits. The advantage of using Hexadecimal System in-memory locations is that it saves space and increases the efficiency of the System

5. Why is Hexadecimal more effective than Binary?

In the Hexadecimal System, there are 16 digits used to represent any Number. Whereas in the Binary System there are only two digits used to represent any Number. For any System, Hexadecimal is more preferred as compared to Binary because it utilizes all the digits from 0 to 9 and alphabets A to F. Whereas Binary System considers 2 digits 0 and 1. This means that the Hexadecimal System helps to compress the Numbers created by the Binary System. Thus saving the space and making it more readable. However, there is no performance difference between Hexadecimal and Binary Systems as the work is done by the compiler to convert the Numbers required for operations. The only reason any System can be preferred over others is their readability score.