Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Sec 0

Reviewed by:
ffImage
hightlight icon
highlight icon
highlight icon
share icon
copy icon
SearchIcon

sec 0 Value

The ratio of the length of the hypotenuse to the length of the adjacent side is the secant of an angle in a right-angled triangle. Consider a triangle RST the secant 0 value of the triangle is the Hypotenuse / Adjacent side. 


Cosecant can be used in place of Secant in the form: Secant = \[\frac{1}{Cosecant}\].


The ratio of the length of the hypotenuse to the length of the adjacent side is the secant of an angle in a right-angled triangle. Consider a triangle RST the secant 0 value of the triangle is the Hypotenuse / Adjacent side. 


Cosecant can be used in place of Secant in the form: Secant = \[\frac{1}{Cosecant}\].


The Inverse Secant x Formula

An inverse function that works in reverse exists for every trigonometric function. All these trigonometric functions start with “arc” in their names. Even the secant has a reverse name and it goes by arcsec. 


How to Calculate Sec 0 Degree?

We know that the first quadrant is between 0 degrees and 90 degrees. In this quadrant, the values of sine, cosine, and tangent are positive. Besides that, we also know that the right angle is always equal to 90 degrees. 


sec y = \[\frac{1}{cosec (y)}\]

sec 0 = \[\frac{1}{cosec (0)}\]

sec 0 = \[\frac{1}{1}\]

sec 0 = 1


Important Formulas in Trigonometry

  1.  sin-1 ( - y ) = - sin -1 ( y ), y Є [ - 1, 1 ]

  2. cos-1 ( - y ) = pi* - cos -1 ( y ), y Є [ - 1, 1 ]

  3.  tan-1 ( - y ) = - tan -1 ( y ), y Є R

  4. cosec-1 ( - y ) = - cosec -1 ( y ), | y | ≥ 1

  5. sec -1 ( - y ) = pi - sec -1 ( y ), | y | ≥ 1

  6. cot -1 ( - y ) = pi - cot -1 ( y ),  y Є R

  7. sin-1 ( - y ) + cos-1 ( - y ) = pi /2 ,  y Є [ - 1, 1 ]

  8. tan-1 ( - y ) + cot -1 ( - y ) =  pi /2 ,  y Є R

  9. sec -1 ( - y ) + cosec-1 ( - y ) = pi /2 ,  | y | ≥ 1

  10.  Sin -1 ( 1 / y ) = cosec -1 ( y ), if y ≥ 1 or y ≤ - 1

  11.  cos -1 ( 1 / y ) = sec -1 ( y ), if y ≥ 1 or y ≤ - 1

  12.  tan -1 ( 1 / y ) = cot -1 ( y ), if y > 0

  13.  tan-1 x + tan-1 y = tan-1 ((x + y) / (1 - xy)), if the value xy < 1

  14.  tan-1 x - tan-1 y = tan-1 ((x - y) / (1 + xy)), if the value xy > - 1

  15.  2 tan  -1 y = sin -1 ( 2x / ( 1 + x2 )), | x | ≤  1

  16.  2 tan  -1 y = cos-1 (( 1- y2)/(1+ y2)), y ≥ 0

  17.  2 tan-1  = tan-1 ( 2y / (1-y2 )), -1 < y < 1

  18.  3sin-1 y = sin-1 ( 3x - 4y3)

  19.  3cos-1 y = cos-1 ( 4y3 -3y )

  20.  3tan-1 y = tan-1 (( 3y - y3 ) / (1 - 3y2))

  21.  sin(sin-1 ( y )) = y, -1 ≤  y  ≤ 1

  22. cos ( cos-1 ( y ) ) = y, -1≤ y ≤1

  23. tan (tan-1 ( y )) = y , – ∞ < x < ∞

  24. cosec ( cosec-1 ( y )) = y, – ∞ < y ≤ 1 or -1 ≤ y < ∞

  25. sec (sec-1 ( y )) = y,- ∞ < y ≤ 1 or 1 ≤ y < ∞


Sample Questions

Question 1: Find the value of tan y if secant y is equal to 1.

Solution: 

sec 2 y = 1 + tan 2 y

sec 2 y - 1 = tan 2 y

( 1 )2 - 1 = tan 2 y

1 - 1 = tan 2 y

tan 2 y = 0

tan y = \[\sqrt 0\]

tan y = 0

FAQs on Sec 0

1) What is Sec 0?

The ratio of the length of the hypotenuse to the length of the adjacent side is the secant of an angle in a right-angled triangle. Cosecant can be used in place of Secant in the form: Secant = 1 / Cosecant. Now, let’s calculate the sec 0 value.

sec y =1/cosecant y

sec 0 = 1/cosecant 0

sec 0 = 1/1

sec 0 = 1

2) What are the Important Trigonometric Formulas?

  1. sin-1 ( - y ) = - sin -1 ( y ), y Є [ - 1, 1 ]

  2. cos-1 ( - y ) = pi* - cos -1 ( y ), y Є [ - 1, 1 ]

  3.  tan-1 ( - y ) = - tan -1 ( y ), y Є R

  4. cosec-1 ( - y ) = - cosec -1 ( y ), | y | ≥ 1

  5. sec -1 ( - y ) = pi - sec -1( y ), | y | ≥ 1

  6. cot -1 ( - y ) = pi - cot -1 ( y ),  y Є R

  7. sin-1 ( - y ) + cos-1 ( - y ) = pi /2 ,  y Є [ - 1, 1 ]

  8. tan-1 ( - y ) + cot -1 ( - y ) =  pi /2 ,  y Є R

  9. sec -1 ( - y ) + cosec-1 ( - y ) = pi /2 ,  | y | ≥ 1

  10.  Sin -1 ( 1 / y ) = cosec -1 ( y ), if y ≥ 1 or y ≤ - 1

  11. cos -1 ( 1 / y ) = sec -1 ( y ), if y ≥ 1 or y ≤ - 1

  12.  tan -1 ( 1 / y ) = cot -1 ( y ), if y > 0

  13.  tan-1 x + tan-1 y = tan-1 ((x + y) / (1 - xy)), if the value xy < 1

  14.  tan-1 x - tan-1 y = tan-1 ((x - y) / (1 + xy)), if the value xy > - 1

  15.  2 tan -1 y = sin -1 ( 2x / ( 1 + x2 )), | x | ≤  1

  16.  2 tan-1 y = cos-1 (( 1- y2)/(1+ y2)), y ≥ 0

  17.  2 tan-1 = tan-1( 2y / (1-y2 )), -1 < y < 1

  18.  3sin-1 y = sin-1 ( 3x - 4y3)

  19.  3cos-1 y = cos-1 ( 4y3 -3y )

  20.  3tan-1 y = tan-1(( 3y - y3 ) / (1 - 3y2))

Check out the section upstairs to understand these formulas better.