Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Value of Log 1

Reviewed by:
ffImage
hightlight icon
highlight icon
highlight icon
share icon
copy icon
SearchIcon

About Log 1 Value

  • In Mathematics, most of the researchers used logarithms to transform multiplication and division problems into addition and subtraction problems before the concept of calculus came into the picture.

  • Logarithms are continuously used in Mathematics and Science as both subjects contend with large numbers.

  •  In this article, we will discuss the log 1 value (log 1 is equal to zero) and the method to derive the value of log 1 through common logarithm functions and natural logarithm functions.


A logarithm is an inverse expression of an exponent. For example, n = bx , where n is a real positive number. And x is the exponent number. Then, the log base format of this is Logb n = x. 

What are Logarithmic Functions?

  • A logarithm is defined as the exponent or power to which a base must be raised to get some new number. It is a convenient approach to express large numbers.

  • Through logarithm, the multiplication of large numbers we can easily resolve speedily. Some common properties of logarithm which proved multiplication and division of logarithms can even be written in the form of logarithm of addition or subtraction. 


Let’s take an example,

 

23=8, where 3 is the logarithm of 8 to base 2 or can be written as 3= log28.

 

Similarly, 102 = 100 which can be written as 2 = log10100

 

Common or Briggsian logarithm is the logarithm with base 10.

Properties of Logarithm-

Given below are the four basic properties of logarithm which would help you to resolve problems based on logarithm.

Logb(mn) = Logb m + Logb n


This property of logarithm says that the multiplication of two logarithm values is equivalent to the addition of the individual logarithm.

Logb (m/n) = Logb m - Logb n


This property of logarithm says that the division of two logarithm values is equivalent to the subtraction of the individual logarithm.

Logb (mn) = n logbm


The above property is known as the exponential rule of the logarithm. The logarithm of m along with the rational exponent is equivalent to the exponent times its logarithm.

Logb m = loga m / loga


When two numbers are divided with the same base, then the exponents will be subtracted.

 

Before deriving Log 1 value, let us discuss logarithm functions and their classifications. A logarithm function is an inverse function to an exponential function. In Mathematics Logarithm can be expressed in the following way:

  REPRESENTATION OF A LOGARITHM  FUNCTION

  logab =x, then ax = b

 

If Logab = x, then ax=b

 

where, “x” = log of a number 

 

“a” = base of a logarithm function.

 

Something you need to keep in mind! The variable “a” should always be a positive integer and not equal to 1.

Classification of Logarithm Function-

  • There are two types of logarithmic functions.


(Image will be updated soon)

 

What do you Mean by Common Logarithmic Function?

  • Common Logarithmic Function or Common logarithm is the logarithm with a base equal to 10.

  • It is also known as the decimal logarithm because of its base.

  • The common logarithm of x is denoted as log x.

  • Example: log 100 = 2 (Since 102= 100) 

What do you mean by Natural Logarithmic Function?

  • The Natural Logarithmic Function is the logarithm with a base equal to the mathematical constant e.

  • The value of e which is a mathematical constant is approximately equal to 2.7182818.

  • The natural logarithm of x is written as logex.

  • Example: loge25= ln 25

What is the Value of Log 1? (A small explanation) How to find the value of log 1?

From the definition of logarithm function,  

 

We can write logab = x can be written in the form of an exponential form: ax = b

 

Now to find the value of log 1, here the base is not defined.

 

 Let us consider the base of log 1 as 10. 

 

Therefore, we can write log 1 as log10 1.≠

 

From the logarithm definition, the value of a = 10 and the value of b = 1. 

 

Such that, log10 x = 1

 

Now by the logarithm rule, the above expression can be rewritten:

 

10x = 1

 

As we know, when any number is raised to the power 0 it is equal to 1.

 

Thus, 10 raised to the power 0 makes the above-written expression true. So, 100 = 1

 

This is a condition for all the base values of log, where the base raised to the power 0 = 1

 

Therefore, we can conclude the value of log 1 is zero, where a can be any positive value (a≠1)

 

log101 = 0

 

How to Find the Value of Ln 1?

Similarly, the natural logarithm value of 1( Ln 1) can be represented by,

 

Ln(b) = loge (b)

 

Therefore, Ln(1) = loge(1) or ex = 1

 

Therefore, e0 = 1

 

Hence, we can conclude that Ln(1) = loge(1) = 0

Log Value from 1 to 10



Value of log

Log 1

0

Log 2

0.3010

Log 3

0.4771

Log 4

0.6020

Log 5

0.6989

Log 6

0.7781

Log 7

0.8450

Log 8

0.9030

Log 9

0.9542

Log 10

1

 

Table showing Ln Values from 1 to 10. Log Values From 1 to 10 to the Base e are Given Below -

In (1) 

0

In (2)

0.693147

In (3)

1.098612

In (4)

1.386294

In (5)

1.609438

In (6)

1.791759

In (7)

1.94591

In (8)

2.079442

In (9)

2.197225

In (10)

2.302585

 

Questions to be Solved on Log 1

Question 1)   Solve for y in log₂ y =6

Solution: The logarithm function of the above function can be written as 26 = y

 Therefore, 25 =2 x 2 x 2 x 2 x 2 x 2 =64 or y = 64

Question 2)   Calculate the value of x in 7x =1000.

Solution: Taking common logarithms on both the sides, and applying the property of the logarithm of a power, 

 

7x =1000 can be written as,

 

7x=103

 

Log 7x = log 103

 

x log7 = 3 log 10

 

x log7 = 3 .1 (Using the log 10 value which is 1)

 

x log7 = 3 

 

x log 7 log 7  =  3log 7 

 

Therefore, x = 3log 7

Fun Facts -

  • The first man to use Logarithm in modern times was the German Mathematician, Michael Stifel (around 1487 -1567).

  • The logarithm with base 10 is known as common or Briggsian, logarithms and can be written as log n. They are usually written without the base.


Using Logarithms in Daily Life

  • Earthquakes that occur in high seismic zones are recorded on the seismograph. They are measured using a device called the “Richter Scale”. To read the recording on the Richter scale, one should use logarithms and know all the laws related to it. 

  • Logarithms are used to determine the pH value of acids, bases and salts and also to compare them.

  • Logarithms are used to measure complex values and represent them in the simple form. 

  • Sound intensity from a source is measured by the concept of loudness. To measure the “loudness”, we use logarithmic values. 

FAQs on Value of Log 1

1. How can we improve scores in the logarithm chapter in the exam?

logarithm is an alternative and inverse to the expression made in exponent form. Students face issues with this chapter as they have to think and solve the problems in reverse. Following are some tips to improve your scores in logarithms:

  • Students should understand that logarithm is an inverse expression of powers or exponents. All they have to do is solve the given problem in an inverse method.

  • Learn all the laws of the logarithm. Know what would be the result for a particular problem if they solve it with the help of a formula that already has an answer.

  • Understanding the result can be done by understanding the formula you have chosen to apply to solve a problem. When you apply a formula that has the answer, you will get to know the result

  • Practice as many problems as you can with different logarithmic values from different exercises and previous year papers. 

  • Refer to the previous year questions to know the exam pattern, assess the depth of the questions asked by the examiner.

  • Any doubts can be clarified with your subject teacher or can be clarified from an online learning website like Vedantu.

2. What do you mean by Log 1?

Logarithm is an opposite expression written inversely to the number expressed as the power of some “x” digit. They are an alternate way of writing exponents. The problems related to logarithms can be solved with the help of logarithmic laws like product law, quotient rule, power rule etc, to know more about these laws please visit the above article. Following is the definition of log 1 value:

Log 1 = 0 no matter what the base is log 1 is always zero

3. What is the value of log 1 base 1?

Logarithms are used to express the exponents in an alternative way. Any problem related to the logarithms is solved in the inverse process of how we solve the exponents. They can be solved with certain logarithmic formulas and laws like the product rule, exponent rule, quotient rule. These are standard for all the problems related to logarithms. One should try to remember them and recall the exact formula or rule needed to solve a problem and simplify it. To know the suitable formula to be used exactly, one should solve as many practice problems as they can or refer to previously solved logarithmic problems. Following is the explanation of the value of log 1 base 1:


Log 1 base 1 = 0. Whatever the base of log 1, it is always equal to 0 

4. How can we find the value of log 1 on a calculator?

Logarithms are an alternate way to express the exponents of a number. It is just the opposite way to write a number that has been written in exponential form. Any problem related to logarithms can be solved with the help of standard logarithmic formulas and laws. For example, product rule, quotient rule, power rule etc., all we have to do is recall the suitable formula, apply it to the given problem and solve it. Following is the explanation to calculate the value of log 1 without the help of a calculator:

  • Enter the number in the calculator

  • Press the shift or inverse button

  • Then press the log or (In) button

5. What are logarithmic laws to be remembered before solving problems?

logarithm is just the opposite of a number raised to its power. Any logarithmic value is governed by the 7 laws of logarithms. Some of them are:

  • The product law of logarithm defines that the logarithmic product of two numbers is the sum of the factors of the logarithms of the same

  • The quotient law states that the logarithm of the ratio of two quantities is the logarithm of difference between the denominator and the numerator of the given value

  • The power rule states that the logarithm of the exponent is the logarithm of exponent times of the base.

  • The zero rule states that the log base 1 is equal to 0 if b is greater than 0 and b is not equal to 1