Introduction to Apoenzyme and Holoenzyme Difference
FAQs on Difference Between Apoenzyme and Holoenzyme
1. What is the importance of Apoenzymes in the living body?
Apoenzymes participate in catalytic processes and go through modifications to enable the conversion of the substrate into a product. For instance, the apoenzymes of glutamate dehydrogenase, lactate dehydrogenase, malate dehydrogenase, and oxidoreductases are connected to NAD coenzymes. The coenzyme NAD has the ability to take up hydrogens released from various substrates. Therefore, the apoenzyme protein component is in charge of each holoenzyme's specificity as well as the ability to recognize its unique substrate.
2. What is the importance of Holoenzymes in the living body?
The holoenzyme is an enzyme ready to perform its catalytic role, which is to speed up certain chemical processes that are produced in various places. Depending on the precise activity of the holoenzyme, the functions may change. One of the most crucial is DNA polymerase, whose function is to make sure the DNA is duplicated accurately. A key holoenzyme in the defense against cellular toxicity is catalase. Its function is to break down the byproduct of cellular metabolism, hydrogen peroxide, into oxygen and water. A manganese ion and a HEMO prosthetic group, which is comparable to hemoglobin, are needed as cofactors to activate the catalase apoenzyme.
3. Explain apoenzyme and holoenzyme.
An enzyme complex that has been activated and combined is called a holoenzyme. Cofactor and apoenzyme must bind for a certain catalytic function. A holoenzyme is an apoenzyme in its active state. Co-factors can be organic or metal-organic molecules (coenzymes), inorganic ions, or organic ions. The two forms of enzyme interchange depending on the requirement of the body. If the substrate needs to be catalyzed, then the cofactor is supplied to the apoenzyme and the active holoenzyme can be generated.