The Basics of Metabolism: Glycolysis and the Krebs Cycle
FAQs on Difference Between Glycolysis and Krebs Cycle
1. What is the difference between glycolysis and krebs cycle?
Glycolysis and the Krebs cycle are two different metabolic pathways involved in cellular respiration. Glycolysis occurs in the cytoplasm of cells, while the Krebs cycle occurs in the mitochondria of eukaryotic cells and the cytoplasm of prokaryotic cells. Glycolysis begins with one molecule of glucose and ends with two molecules of pyruvate, while the Krebs cycle begins with two molecules of acetyl-CoA and ends with carbon dioxide, water, and energy. Glycolysis produces a net gain of two ATP molecules per glucose molecule, while the Krebs cycle produces a total of two ATP molecules per glucose molecule. Glycolysis can occur in the presence or absence of oxygen, while the Krebs cycle requires oxygen. Glycolysis is a relatively fast and efficient process, while the Krebs cycle is a relatively slow and inefficient process.
2. What are the end products of glycolysis and how do they differ from the end products of the Krebs cycle?
Glycolysis involves the partial oxidation of glucose, resulting in the production of two pyruvic acid molecules. On the other hand, the Krebs cycle is an aerobic process occurring in the cell's mitochondria, where complete oxidation of the pyruvic acid formed during glycolysis yields carbon dioxide.
3. What are the similarities between glycolysis and krebs cycle?
The similarities between glycolysis and the Krebs cycle are that both metabolic pathways are involved in cellular respiration and energy production. Both pathways involve the breakdown of molecules to produce energy-rich molecules such as ATP. Both glycolysis and the Krebs cycle involve a series of enzyme-catalyzed reactions that are tightly regulated to ensure that the pathways proceed efficiently. Both pathways also involve the production of electron carriers, such as NADH and FADH2, which donate electrons to the electron transport chain to produce ATP. Finally, both pathways are essential for the survival of cells, as they provide the energy necessary for cellular processes such as growth, maintenance, and reproduction.