What is Shell and Orbit: Introduction
FAQs on Difference Between Shell and Orbit
1. What is the relationship between shells and orbitals in an atom?
Shells and orbitals are related concepts in atomic structure. Shells represent specific energy levels or electron clouds surrounding the atomic nucleus, while orbitals describe the most likely paths or regions where electrons can be found within a given shell. Each shell consists of one or more orbitals, and each orbital can hold a maximum of two electrons. The number and arrangement of orbitals within a shell depend on the principal quantum number (n) associated with that shell.
2. How do electrons occupy shells and orbitals?
Electrons occupy shells and orbitals based on the principle of Aufbau, Hund's rule, and the Pauli exclusion principle. According to the Aufbau principle, electrons fill the lowest energy level (shell) first before moving to higher energy levels. Within a shell, electrons occupies different orbitals one by one, following Hund's rule, which states that electrons prefer to occupy separate orbitals with the same energy level before pairing up. The Pauli exclusion principle states that each electron in an orbital must have opposite spins.
2. Can an electron jump between different shells or orbitals?
Electrons can jump between different energy levels (shells) by either gaining or losing energy. This phenomenon is observed in processes such as the absorption or emission of energy in the form of photons. However, during normal atomic behavior, electrons tend to occupy the lowest available energy level (shell) before moving to higher levels. Within a shell, electrons can move between different orbitals with the same energy. These transitions between orbitals or shells are governed by the energy changes within the atom.