Answer
Verified
460.8k+ views
Hint: To solve the given equation we will first rationalize each of the terms given to us separately. After rationalizing each term we will find that the denominator of each term will become 1. Because the denominator becomes 1 we can write numerators separately.
After writing the numerator separately we will proceed accordingly and get the desired answer.
Complete step-by-step answer:
First, we will rationalize each term:
$\Rightarrow \dfrac{1}{(\sqrt{9}-\sqrt{8})}\times \dfrac{(\sqrt{9}+\sqrt{8})}{(\sqrt{9}+\sqrt{8})} $
$\Rightarrow \dfrac{1}{(\sqrt{9}-\sqrt{8})}\times \dfrac{(\sqrt{9}+\sqrt{8})}{(\sqrt{9}+\sqrt{8})}-\dfrac{1}{(\sqrt{8}-\sqrt{7})}\times \dfrac{(\sqrt{8}+\sqrt{7})}{(\sqrt{8}+\sqrt{7})}+ $
$ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{1}{(\sqrt{7}-\sqrt{6})}\times \dfrac{(\sqrt{7}+\sqrt{6})}{(\sqrt{7}+\sqrt{6})}-\dfrac{1}{(\sqrt{6}-\sqrt{5})}\times \dfrac{(\sqrt{6}+\sqrt{5})}{(\sqrt{6}+\sqrt{5})}+\dfrac{1}{(\sqrt{5}-\sqrt{4})}\times \dfrac{(\sqrt{5}+\sqrt{4})}{(\sqrt{5}+\sqrt{4})} $
$ $
$ \Rightarrow\dfrac{(\sqrt{9}+\sqrt{8})}{{{(\sqrt{9})}^{2}}-{{(\sqrt{8})}^{2}}}-\dfrac{(\sqrt{8}+\sqrt{7})}{{{(\sqrt{8})}^{2}}-{{(\sqrt{7})}^{2}}}+\dfrac{(\sqrt{7}+\sqrt{6})}{{{(\sqrt{7})}^{2}}-{{(\sqrt{6})}^{2}}}-\dfrac{(\sqrt{6}+\sqrt{5})}{{{(\sqrt{6})}^{2}}-{{(\sqrt{5})}^{2}}}+\dfrac{(\sqrt{5}+\sqrt{4})}{{{(\sqrt{5})}^{2}}-{{(\sqrt{4})}^{2}}} $
We used the formula \[(a+b)(a-b)=({{a}^{2}}-{{b}^{2}})\] and \[{{(\sqrt{a})}^{2}}=a\]
After rationalizing we will simplify:
$ \Rightarrow \dfrac{(\sqrt{9}+\sqrt{8})}{9-8}-\dfrac{(\sqrt{8}+\sqrt{7})}{8-7}+\dfrac{(\sqrt{7}+\sqrt{6})}{7-6}-\dfrac{(\sqrt{6}+\sqrt{5})}{6-5}+\dfrac{(\sqrt{5}+\sqrt{4})}{5-4} $
$ \Rightarrow\dfrac{(\sqrt{9}+\sqrt{8})}{1}-\dfrac{(\sqrt{8}+\sqrt{7})}{1}+\dfrac{(\sqrt{7}+\sqrt{6})}{1}-\dfrac{(\sqrt{6}+\sqrt{5})}{1}+\dfrac{(\sqrt{5}+\sqrt{4})}{1} $
$ \Rightarrow\sqrt{9}+\sqrt{8}-(\sqrt{8}+\sqrt{7})+(\sqrt{7}+\sqrt{6})-(\sqrt{6}+\sqrt{5})+(\sqrt{5}+\sqrt{4}) $
$ \Rightarrow\sqrt{9}+\sqrt{8}-\sqrt{8}-\sqrt{7}+\sqrt{7}+\sqrt{6}-\sqrt{6}-\sqrt{5}+\sqrt{5}+\sqrt{4} $
$ \Rightarrow \sqrt{9}+\sqrt{4} $
$\Rightarrow 3+2=5\text{ }\!\![\!\!\text{ }\because \sqrt{9}=\sqrt{{{3}^{2}}}\text{=3; }\sqrt{4}=\sqrt{{{2}^{2}}}=2\text{ }\!\!]\!\!\text{ } $
We see that all the terms except for the first and last term get canceled.
Thus, the answer to the given expression will be yielded as options D. 5.
So, the correct answer is “Option D”.
Note: This type of similar question can be expressed in the way\[\dfrac{1}{(\sqrt{n}-\sqrt{n-1})}-\dfrac{1}{(\sqrt{n-1}-\sqrt{n-2})}.......+\dfrac{1}{(\sqrt{n-(1-x)}-\sqrt{n-x})}-\dfrac{1}{(\sqrt{n-x}-\sqrt{n-(x+1)})}\]
Where only the first and last term remains because there are no terms like\[\sqrt{n}\] and \[\sqrt{n-(x+1)}\]
Thus, the only general method of solving a similar type of sums is by rationalizing the denominator and proceeding with the question accordingly. Whenever there is\[(n+(n+1)\text{ }\!\![\!\!\text{ Example: 1+2 }\!\!]\!\!\text{ or }n+(n-1)\,\,\,\,\,\,\,\,\,\,[\text{Example: 4+3}]\text{ , etc)}\] type of equation or anything similar to it in the denominator we should try to bring these values to the denominator either by rationalization or any other method since this will decrease the difficulty of the calculations.
Be careful when opening the brackets after rationalization.
After writing the numerator separately we will proceed accordingly and get the desired answer.
Complete step-by-step answer:
First, we will rationalize each term:
$\Rightarrow \dfrac{1}{(\sqrt{9}-\sqrt{8})}\times \dfrac{(\sqrt{9}+\sqrt{8})}{(\sqrt{9}+\sqrt{8})} $
$\Rightarrow \dfrac{1}{(\sqrt{9}-\sqrt{8})}\times \dfrac{(\sqrt{9}+\sqrt{8})}{(\sqrt{9}+\sqrt{8})}-\dfrac{1}{(\sqrt{8}-\sqrt{7})}\times \dfrac{(\sqrt{8}+\sqrt{7})}{(\sqrt{8}+\sqrt{7})}+ $
$ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{1}{(\sqrt{7}-\sqrt{6})}\times \dfrac{(\sqrt{7}+\sqrt{6})}{(\sqrt{7}+\sqrt{6})}-\dfrac{1}{(\sqrt{6}-\sqrt{5})}\times \dfrac{(\sqrt{6}+\sqrt{5})}{(\sqrt{6}+\sqrt{5})}+\dfrac{1}{(\sqrt{5}-\sqrt{4})}\times \dfrac{(\sqrt{5}+\sqrt{4})}{(\sqrt{5}+\sqrt{4})} $
$ $
$ \Rightarrow\dfrac{(\sqrt{9}+\sqrt{8})}{{{(\sqrt{9})}^{2}}-{{(\sqrt{8})}^{2}}}-\dfrac{(\sqrt{8}+\sqrt{7})}{{{(\sqrt{8})}^{2}}-{{(\sqrt{7})}^{2}}}+\dfrac{(\sqrt{7}+\sqrt{6})}{{{(\sqrt{7})}^{2}}-{{(\sqrt{6})}^{2}}}-\dfrac{(\sqrt{6}+\sqrt{5})}{{{(\sqrt{6})}^{2}}-{{(\sqrt{5})}^{2}}}+\dfrac{(\sqrt{5}+\sqrt{4})}{{{(\sqrt{5})}^{2}}-{{(\sqrt{4})}^{2}}} $
We used the formula \[(a+b)(a-b)=({{a}^{2}}-{{b}^{2}})\] and \[{{(\sqrt{a})}^{2}}=a\]
After rationalizing we will simplify:
$ \Rightarrow \dfrac{(\sqrt{9}+\sqrt{8})}{9-8}-\dfrac{(\sqrt{8}+\sqrt{7})}{8-7}+\dfrac{(\sqrt{7}+\sqrt{6})}{7-6}-\dfrac{(\sqrt{6}+\sqrt{5})}{6-5}+\dfrac{(\sqrt{5}+\sqrt{4})}{5-4} $
$ \Rightarrow\dfrac{(\sqrt{9}+\sqrt{8})}{1}-\dfrac{(\sqrt{8}+\sqrt{7})}{1}+\dfrac{(\sqrt{7}+\sqrt{6})}{1}-\dfrac{(\sqrt{6}+\sqrt{5})}{1}+\dfrac{(\sqrt{5}+\sqrt{4})}{1} $
$ \Rightarrow\sqrt{9}+\sqrt{8}-(\sqrt{8}+\sqrt{7})+(\sqrt{7}+\sqrt{6})-(\sqrt{6}+\sqrt{5})+(\sqrt{5}+\sqrt{4}) $
$ \Rightarrow\sqrt{9}+\sqrt{8}-\sqrt{8}-\sqrt{7}+\sqrt{7}+\sqrt{6}-\sqrt{6}-\sqrt{5}+\sqrt{5}+\sqrt{4} $
$ \Rightarrow \sqrt{9}+\sqrt{4} $
$\Rightarrow 3+2=5\text{ }\!\![\!\!\text{ }\because \sqrt{9}=\sqrt{{{3}^{2}}}\text{=3; }\sqrt{4}=\sqrt{{{2}^{2}}}=2\text{ }\!\!]\!\!\text{ } $
We see that all the terms except for the first and last term get canceled.
Thus, the answer to the given expression will be yielded as options D. 5.
So, the correct answer is “Option D”.
Note: This type of similar question can be expressed in the way\[\dfrac{1}{(\sqrt{n}-\sqrt{n-1})}-\dfrac{1}{(\sqrt{n-1}-\sqrt{n-2})}.......+\dfrac{1}{(\sqrt{n-(1-x)}-\sqrt{n-x})}-\dfrac{1}{(\sqrt{n-x}-\sqrt{n-(x+1)})}\]
Where only the first and last term remains because there are no terms like\[\sqrt{n}\] and \[\sqrt{n-(x+1)}\]
Thus, the only general method of solving a similar type of sums is by rationalizing the denominator and proceeding with the question accordingly. Whenever there is\[(n+(n+1)\text{ }\!\![\!\!\text{ Example: 1+2 }\!\!]\!\!\text{ or }n+(n-1)\,\,\,\,\,\,\,\,\,\,[\text{Example: 4+3}]\text{ , etc)}\] type of equation or anything similar to it in the denominator we should try to bring these values to the denominator either by rationalization or any other method since this will decrease the difficulty of the calculations.
Be careful when opening the brackets after rationalization.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE