Answer
Verified
389.6k+ views
Hint: We will think of any 2 irrational numbers, we will find their sum and see if it is a rational number. We will think of any 2 irrational numbers, we will find their product and see if it is a rational number.
Formula used: \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
Complete step-by-step answer:
We will look at some properties of rational and irrational numbers that will help us in solving the question:
We know that a number is a rational number if it can be expressed in the form \[\dfrac{p}{q}\] where \[p\]and \[q\] are integers with no common factor and \[q \ne 0\].
We know that a number is an irrational number if it cannot be expressed in the form \[\dfrac{p}{q}\] where \[p\]and \[q\] are integers with no common factor and \[q \ne 0\].
We know that the sum of a rational and an irrational number is always an irrational number.
We know that the difference of a rational and an irrational number is always an irrational number.
We know that \[\sqrt 7 \] is an irrational number.
We can conclude from the 3rd property that \[2 + \sqrt 7 \] is an irrational number.
We can conclude from the 4th property that \[2 - \sqrt 7 \] is an irrational number.
We will take the first number as \[2 + \sqrt 7 \] and the second number as \[2 - \sqrt 7 \].
We will find the sum of the 2 numbers:
$( {2 + \sqrt 7 } + ( {2 - \sqrt 7 }$
=$ 2 + \sqrt 7 + 2 - \sqrt 7 $
=$ {2 + 2}$+${\sqrt 7 - \sqrt 7 }$
= 4
4 is a rational number.
We will find the product of the 2 numbers. We will substitute 2 for \[a\] and \[\sqrt 7 \] for \[b\]in the formula:
$(2 + \sqrt 7)$.$(2 - \sqrt 7)$
=${2^2} - ( {\sqrt 7 }$
= 4 - 7
= - 3
\[ - 3\] is a rational number.
\[\therefore 2 + \sqrt 7 \] and \[2 - \sqrt 7 \] are 2 irrational numbers whose sum as well as the product are rational numbers.
Note: We must know that the square roots of all non-negative integers except the perfect squares are irrational numbers. This will help us in choosing the correct irrational number. For example, \[\sqrt 2 ,\sqrt 3 ,\sqrt 5 ,\sqrt 7 ,\]etc are irrational numbers whereas \[\sqrt 9 ,\sqrt {16} ,\sqrt {25} ,\sqrt {49} ,\] etc are rational numbers.
Formula used: \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
Complete step-by-step answer:
We will look at some properties of rational and irrational numbers that will help us in solving the question:
We know that a number is a rational number if it can be expressed in the form \[\dfrac{p}{q}\] where \[p\]and \[q\] are integers with no common factor and \[q \ne 0\].
We know that a number is an irrational number if it cannot be expressed in the form \[\dfrac{p}{q}\] where \[p\]and \[q\] are integers with no common factor and \[q \ne 0\].
We know that the sum of a rational and an irrational number is always an irrational number.
We know that the difference of a rational and an irrational number is always an irrational number.
We know that \[\sqrt 7 \] is an irrational number.
We can conclude from the 3rd property that \[2 + \sqrt 7 \] is an irrational number.
We can conclude from the 4th property that \[2 - \sqrt 7 \] is an irrational number.
We will take the first number as \[2 + \sqrt 7 \] and the second number as \[2 - \sqrt 7 \].
We will find the sum of the 2 numbers:
$( {2 + \sqrt 7 } + ( {2 - \sqrt 7 }$
=$ 2 + \sqrt 7 + 2 - \sqrt 7 $
=$ {2 + 2}$+${\sqrt 7 - \sqrt 7 }$
= 4
4 is a rational number.
We will find the product of the 2 numbers. We will substitute 2 for \[a\] and \[\sqrt 7 \] for \[b\]in the formula:
$(2 + \sqrt 7)$.$(2 - \sqrt 7)$
=${2^2} - ( {\sqrt 7 }$
= 4 - 7
= - 3
\[ - 3\] is a rational number.
\[\therefore 2 + \sqrt 7 \] and \[2 - \sqrt 7 \] are 2 irrational numbers whose sum as well as the product are rational numbers.
Note: We must know that the square roots of all non-negative integers except the perfect squares are irrational numbers. This will help us in choosing the correct irrational number. For example, \[\sqrt 2 ,\sqrt 3 ,\sqrt 5 ,\sqrt 7 ,\]etc are irrational numbers whereas \[\sqrt 9 ,\sqrt {16} ,\sqrt {25} ,\sqrt {49} ,\] etc are rational numbers.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE