Answer
Verified
422.4k+ views
Hint: A prime number is one which has at least one factor other than 1 and itself. As such, what needs to be done is that you need to convert this number into a multiple of two numbers. Also this question will use the formula of sum of G.P. (geometric progression).
Formulas used:
${S_{G.P.}} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$
Where ‘a’ is the first term, ‘r’ is the common ratio and ‘n’ is the number of terms.
Complete Step by Step Solution:
Looking at the question, we see this number and observe that it doesn’t have any number after the decimal place and as such it is an integer so the option D is correct and option C is wrong.
Now moving forward, we check if it is a prime number or a composite number. A prime number is one which has at least one factor other than 1 and itself. Thus, we will try to convert the number into a multiple of two numbers.
For this, first of all we will expand this number, say N.
\[\
N = 111.....1\left( {91\,times} \right) \\
= {10^0} + {10^1} + {10^2} + {10^3} + ....... + {10^{90}} \\
\ \]
Now, we need to make this a G.P. so we will create a common ratio. 1 cannot be taken as the same and so we will take it to be 10. Thus, we will be putting $10 - 1 = 9$ in the place of ‘r-1’ in the sum of G.P. formula which demands that we multiply the number N by 9. As such,
$\
N \times 9 = 999......9\left( {91\,times} \right) \\
= {10^{91}} - 1 \\
\ $
So, sum of G.P. whose result will be N can be given by
$\
{S_{G.P.}} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}} = N \\
= \dfrac{{1\left( {{{10}^{91}} - 1} \right)}}{{10 - 1}} \\
\ $
Now we multiply and divide this equation by a number which is one less than 10 raised to a multiple of 91 where 7 and 13 are both its multiples. We will be going with 13, so
$\
{S_{G.P.}} = \dfrac{{\left( {{{10}^{91}} - 1} \right)}}{{10 - 1}} \times \dfrac{{{{10}^{13}} - 1}}{{{{10}^{13}} - 1}} \\
= \dfrac{{\left( {{{10}^{91}} - 1} \right)}}{{{{10}^{13}} - 1}} \times \dfrac{{{{10}^{13}} - 1}}{{10 - 1}} \\
= \dfrac{{{{\left( {{{10}^{13}}} \right)}^7} - 1}}{{{{10}^{13}} - 1}} \times \dfrac{{{{10}^{13}} - 1}}{{10 - 1}} \\
\ $
Now, we expand the G.P. which gives us two multiples.
\[\
{S_{G.P.}} = N \\
= \dfrac{{{{\left( {{{10}^{13}}} \right)}^7} - 1}}{{{{10}^{13}} - 1}} \times \dfrac{{{{10}^{13}} - 1}}{{10 - 1}} \\
= \left[ {{{\left( {{{10}^{13}}} \right)}^0} + {{\left( {{{10}^{13}}} \right)}^1} + {{\left( {{{10}^{13}}} \right)}^2} + {{\left( {{{10}^{13}}} \right)}^3} + {{\left( {{{10}^{13}}} \right)}^4} + {{\left( {{{10}^{13}}} \right)}^5} + {{\left( {{{10}^{13}}} \right)}^6}} \right] \cdot \left[ {{{10}^0} + {{10}^1} + {{10}^2} + {{10}^3} + {{10}^4} + {{10}^5} + {{10}^6}} \right] \\
\ \]
Since it has two multiples, it is a composite number.
Note:
In such types of questions, making it a G.P. form is the most effective method to solve it. If it were anything like 222…. or 333….. or something like that, first take the number common and make it in 111…. Form to use G.P. format. For example,
$\
222..... = 2 \times 111.... \\
333..... = 3 \times 111.... \\
\ $
Secondly, about being an integer, if any number has something other than zero on the right of its decimal point, it is not an integer.
Formulas used:
${S_{G.P.}} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$
Where ‘a’ is the first term, ‘r’ is the common ratio and ‘n’ is the number of terms.
Complete Step by Step Solution:
Looking at the question, we see this number and observe that it doesn’t have any number after the decimal place and as such it is an integer so the option D is correct and option C is wrong.
Now moving forward, we check if it is a prime number or a composite number. A prime number is one which has at least one factor other than 1 and itself. Thus, we will try to convert the number into a multiple of two numbers.
For this, first of all we will expand this number, say N.
\[\
N = 111.....1\left( {91\,times} \right) \\
= {10^0} + {10^1} + {10^2} + {10^3} + ....... + {10^{90}} \\
\ \]
Now, we need to make this a G.P. so we will create a common ratio. 1 cannot be taken as the same and so we will take it to be 10. Thus, we will be putting $10 - 1 = 9$ in the place of ‘r-1’ in the sum of G.P. formula which demands that we multiply the number N by 9. As such,
$\
N \times 9 = 999......9\left( {91\,times} \right) \\
= {10^{91}} - 1 \\
\ $
So, sum of G.P. whose result will be N can be given by
$\
{S_{G.P.}} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}} = N \\
= \dfrac{{1\left( {{{10}^{91}} - 1} \right)}}{{10 - 1}} \\
\ $
Now we multiply and divide this equation by a number which is one less than 10 raised to a multiple of 91 where 7 and 13 are both its multiples. We will be going with 13, so
$\
{S_{G.P.}} = \dfrac{{\left( {{{10}^{91}} - 1} \right)}}{{10 - 1}} \times \dfrac{{{{10}^{13}} - 1}}{{{{10}^{13}} - 1}} \\
= \dfrac{{\left( {{{10}^{91}} - 1} \right)}}{{{{10}^{13}} - 1}} \times \dfrac{{{{10}^{13}} - 1}}{{10 - 1}} \\
= \dfrac{{{{\left( {{{10}^{13}}} \right)}^7} - 1}}{{{{10}^{13}} - 1}} \times \dfrac{{{{10}^{13}} - 1}}{{10 - 1}} \\
\ $
Now, we expand the G.P. which gives us two multiples.
\[\
{S_{G.P.}} = N \\
= \dfrac{{{{\left( {{{10}^{13}}} \right)}^7} - 1}}{{{{10}^{13}} - 1}} \times \dfrac{{{{10}^{13}} - 1}}{{10 - 1}} \\
= \left[ {{{\left( {{{10}^{13}}} \right)}^0} + {{\left( {{{10}^{13}}} \right)}^1} + {{\left( {{{10}^{13}}} \right)}^2} + {{\left( {{{10}^{13}}} \right)}^3} + {{\left( {{{10}^{13}}} \right)}^4} + {{\left( {{{10}^{13}}} \right)}^5} + {{\left( {{{10}^{13}}} \right)}^6}} \right] \cdot \left[ {{{10}^0} + {{10}^1} + {{10}^2} + {{10}^3} + {{10}^4} + {{10}^5} + {{10}^6}} \right] \\
\ \]
Since it has two multiples, it is a composite number.
Note:
In such types of questions, making it a G.P. form is the most effective method to solve it. If it were anything like 222…. or 333….. or something like that, first take the number common and make it in 111…. Form to use G.P. format. For example,
$\
222..... = 2 \times 111.... \\
333..... = 3 \times 111.... \\
\ $
Secondly, about being an integer, if any number has something other than zero on the right of its decimal point, it is not an integer.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE