Answer
Verified
446.4k+ views
Hint: For solving these types of questions let us assume that the time in which the first pipe would fill the cistern individually is $x$ minutes. From the basic concept, we can say that the sum of the part of the cistern of each pipe individually filled in 1 minute will be equal to the part of the cistern filled by 2 pipes simultaneously in 1 minute. By performing further simplifications we will end up having the answer.
Complete step-by-step solution:
Let us assume that the time in which the first pipe would fill the cistern individually is $x$ minutes.
From the question, we have that the time in which the second pipe will fill the cistern is 5 minutes more than the one with the first pipe.
Now we can say that the time in which the second pipe will fill the cistern individually will be $x+5$ minutes.
Given in the question that 2 pipes running together can fill a cistern in 6 minutes.
So we can say that the sum of the part of the cistern of each pipe individually filled in 1 minute will be equal to the part of the cistern filled by 2 pipes simultaneously in 1 minute.
This can be mathematically expressed as
$\dfrac{1}{x}+\dfrac{1}{x+5}=\dfrac{1}{6}$
This can be further simplified as
$\dfrac{x+5+x}{x\left( x+5 \right)}=\dfrac{1}{6}$
By performing further simplifications we will have $\dfrac{2x+5}{x\left( x+5 \right)}=\dfrac{1}{6}$
This can be written as $\dfrac{2x+5}{{{x}^{2}}+5x}=\dfrac{1}{6}$
By performing L.H.S and R.H.S transformations for further simplifications, $6\left( 2x+5 \right)={{x}^{2}}+5x$
By performing further simplifications we will get
$\begin{align}
& 12x+30={{x}^{2}}+5x \\
& \Rightarrow {{x}^{2}}+5x-12x-30=0 \\
& \Rightarrow {{x}^{2}}-7x-30=0 \\
& \Rightarrow {{x}^{2}}-10x+3x-30=0 \\
& \Rightarrow x\left( x-10 \right)+3\left( x-10 \right)=0 \\
& \Rightarrow \left( x+3 \right)\left( x-10 \right)=0 \\
\end{align}$
From this we can conclude that $x=10\And x=-3$ are the possible values.
As here are assuming $x$ as the time in which the water from the pipe is flowing so it can’t be negative. Hence we can say that $x=10$.
Hence, we can conclude that the time in which each pipe would fill the cistern is $10\min $ and $15\min $ respectively.
Note: In work time problems like this one, the equations must be made with respect to work completed as reference. The trick in solving this question is that it requires solving expressions on a common base of LCM. And we should note that time is never negative.
Complete step-by-step solution:
Let us assume that the time in which the first pipe would fill the cistern individually is $x$ minutes.
From the question, we have that the time in which the second pipe will fill the cistern is 5 minutes more than the one with the first pipe.
Now we can say that the time in which the second pipe will fill the cistern individually will be $x+5$ minutes.
Given in the question that 2 pipes running together can fill a cistern in 6 minutes.
So we can say that the sum of the part of the cistern of each pipe individually filled in 1 minute will be equal to the part of the cistern filled by 2 pipes simultaneously in 1 minute.
This can be mathematically expressed as
$\dfrac{1}{x}+\dfrac{1}{x+5}=\dfrac{1}{6}$
This can be further simplified as
$\dfrac{x+5+x}{x\left( x+5 \right)}=\dfrac{1}{6}$
By performing further simplifications we will have $\dfrac{2x+5}{x\left( x+5 \right)}=\dfrac{1}{6}$
This can be written as $\dfrac{2x+5}{{{x}^{2}}+5x}=\dfrac{1}{6}$
By performing L.H.S and R.H.S transformations for further simplifications, $6\left( 2x+5 \right)={{x}^{2}}+5x$
By performing further simplifications we will get
$\begin{align}
& 12x+30={{x}^{2}}+5x \\
& \Rightarrow {{x}^{2}}+5x-12x-30=0 \\
& \Rightarrow {{x}^{2}}-7x-30=0 \\
& \Rightarrow {{x}^{2}}-10x+3x-30=0 \\
& \Rightarrow x\left( x-10 \right)+3\left( x-10 \right)=0 \\
& \Rightarrow \left( x+3 \right)\left( x-10 \right)=0 \\
\end{align}$
From this we can conclude that $x=10\And x=-3$ are the possible values.
As here are assuming $x$ as the time in which the water from the pipe is flowing so it can’t be negative. Hence we can say that $x=10$.
Hence, we can conclude that the time in which each pipe would fill the cistern is $10\min $ and $15\min $ respectively.
Note: In work time problems like this one, the equations must be made with respect to work completed as reference. The trick in solving this question is that it requires solving expressions on a common base of LCM. And we should note that time is never negative.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE