
When 20 g of naphthoic acid $\left( {{{\rm{C}}_{{\rm{11}}}}{{\rm{H}}_{\rm{8}}}{{\rm{O}}_{\rm{2}}}} \right)$ is dissolved in 50 g benzene $\left( {{K_f} = 1.72\,{\rm{K}}\,{\rm{kg}}\,{\rm{mo}}{{\rm{l}}^{ - 1}}} \right)$ freezing point depression of 2K is observed. The van’t Hoff factor (i) is:
A.0.5
B.1
C.2
D.3
Answer
572.1k+ views
Hint: We know that, van’t Hoff factor was introduced in 1880 by van’t Hoff to account for association or dissociation. It is represented by the symbol ‘i’. The formula of van’t Hoff factor is, $i = \dfrac{{{\rm{Normal}}\,\,{\rm{molar}}\,{\rm{mass}}}}{{{\rm{Abnormal}}\,\,{\rm{molar}}\,{\rm{mass}}}}$. Here, we have to use the expression of freezing point depression comprising van’t Hoff factor, that is, $\Delta {T_f} = i{K_f}m$
Complete step by step answer:
Addition of the van’t Hoff factor to modify the equation of freezing point depression.
$\Delta {T_f} = i{K_f}m$ …… (1)
Here, $\Delta {T_f}$ is freezing point depression, I is van’t Hoff factor, ${K_f}$ is freezing constant and m is molality.
First we have to calculate the molality of naphthoic acid. The formula of molality is,
Molality=$\dfrac{{{\rm{Moles}}\,{\rm{of}}\,{\rm{solute}}}}{{{\rm{Volume}}\,{\rm{of}}\,{\rm{solvent}}\,{\rm{in}}\,{\rm{Kg}}}}$ …… (2)
To calculate moles of solute the formula is,
${\rm{Moles}}\,{\rm{of}}\,{\rm{solute}} = \dfrac{{{\rm{Mass}}}}{{{\rm{Molar}}\,{\rm{mass}}}}$
Here, mass of naphthoic acid $\left( {{{\rm{C}}_{{\rm{11}}}}{{\rm{H}}_{\rm{8}}}{{\rm{O}}_{\rm{2}}}} \right)$ is 20 g and molar mass of naphthoic acid is \[ = 11 \times 12 + 8 \times 1 + 16 \times 2 = 172\,{\rm{g}}\]
So, moles of naphthoic acid=$\dfrac{{20}}{{172}}$
Now, we have to use equation (2) to calculate molality. Volume of solvent is 50 g
So, molality of the solution =$\dfrac{{\dfrac{{20}}{{172}}}}{{\dfrac{{50}}{{1000}}}} = 2.32$
The freezing point depression $\left( {\Delta {T_f}} \right)$ is 2K and value of ${K_f}$ is $1.72\,{\rm{K}}\,{\rm{kg}}\,{\rm{mo}}{{\rm{l}}^{ - 1}}$ and molality is 2.32. Put all these values in equation (1).
$\Delta {T_f} = i{K_f}m$
$ \Rightarrow 2 = i \times 1.72\, \times 2.32$
$ \Rightarrow i = \dfrac{2}{{1.72 \times 2.32}}$
$ \Rightarrow i = 0.5$
Therefore, the van’t Hoff factor is 0.5
So, the correct answer is Option A.
Note: We know,
$i = \dfrac{{{\rm{Normal}}\,\,{\rm{molar}}\,{\rm{mass}}}}{{{\rm{Abnormal}}\,\,{\rm{molar}}\,{\rm{mass}}}}$
Here, the molar mass obtained through the experiment is termed as abnormal molar mass.
Also we can write above equation as
$i = \dfrac{{{\rm{Observed}}\,{\rm{colligative}}\,{\rm{property}}}}{{{\rm{Calculated colligative}}\,{\rm{property}}}}$
The calculated colligative properties are obtained by assuming that there is neither association nor dissociation of non-volatile solutes.
Or
$i{\rm{ = }}\dfrac{{{\rm{Total}}\,\,{\rm{number}}\,{\rm{of}}\,{\rm{moles}}\,{\rm{of}}\,{\rm{particles}}\,{\rm{after}}\,{\rm{association}}\,{\rm{or}}\,{\rm{dissociation}}}}{{{\rm{Number}}\,{\rm{of}}\,{\rm{moles}}\,{\rm{of}}\,{\rm{particles}}\,{\rm{before}}\,{\rm{association}}\,{\rm{or}}\,{\rm{dissociation}}}}$
Always remember that the value of van’t Hoff factor is less than one in case of association and more than one in case of dissociation. We know that KCl undergoes dissociation so its value
Complete step by step answer:
Addition of the van’t Hoff factor to modify the equation of freezing point depression.
$\Delta {T_f} = i{K_f}m$ …… (1)
Here, $\Delta {T_f}$ is freezing point depression, I is van’t Hoff factor, ${K_f}$ is freezing constant and m is molality.
First we have to calculate the molality of naphthoic acid. The formula of molality is,
Molality=$\dfrac{{{\rm{Moles}}\,{\rm{of}}\,{\rm{solute}}}}{{{\rm{Volume}}\,{\rm{of}}\,{\rm{solvent}}\,{\rm{in}}\,{\rm{Kg}}}}$ …… (2)
To calculate moles of solute the formula is,
${\rm{Moles}}\,{\rm{of}}\,{\rm{solute}} = \dfrac{{{\rm{Mass}}}}{{{\rm{Molar}}\,{\rm{mass}}}}$
Here, mass of naphthoic acid $\left( {{{\rm{C}}_{{\rm{11}}}}{{\rm{H}}_{\rm{8}}}{{\rm{O}}_{\rm{2}}}} \right)$ is 20 g and molar mass of naphthoic acid is \[ = 11 \times 12 + 8 \times 1 + 16 \times 2 = 172\,{\rm{g}}\]
So, moles of naphthoic acid=$\dfrac{{20}}{{172}}$
Now, we have to use equation (2) to calculate molality. Volume of solvent is 50 g
So, molality of the solution =$\dfrac{{\dfrac{{20}}{{172}}}}{{\dfrac{{50}}{{1000}}}} = 2.32$
The freezing point depression $\left( {\Delta {T_f}} \right)$ is 2K and value of ${K_f}$ is $1.72\,{\rm{K}}\,{\rm{kg}}\,{\rm{mo}}{{\rm{l}}^{ - 1}}$ and molality is 2.32. Put all these values in equation (1).
$\Delta {T_f} = i{K_f}m$
$ \Rightarrow 2 = i \times 1.72\, \times 2.32$
$ \Rightarrow i = \dfrac{2}{{1.72 \times 2.32}}$
$ \Rightarrow i = 0.5$
Therefore, the van’t Hoff factor is 0.5
So, the correct answer is Option A.
Note: We know,
$i = \dfrac{{{\rm{Normal}}\,\,{\rm{molar}}\,{\rm{mass}}}}{{{\rm{Abnormal}}\,\,{\rm{molar}}\,{\rm{mass}}}}$
Here, the molar mass obtained through the experiment is termed as abnormal molar mass.
Also we can write above equation as
$i = \dfrac{{{\rm{Observed}}\,{\rm{colligative}}\,{\rm{property}}}}{{{\rm{Calculated colligative}}\,{\rm{property}}}}$
The calculated colligative properties are obtained by assuming that there is neither association nor dissociation of non-volatile solutes.
Or
$i{\rm{ = }}\dfrac{{{\rm{Total}}\,\,{\rm{number}}\,{\rm{of}}\,{\rm{moles}}\,{\rm{of}}\,{\rm{particles}}\,{\rm{after}}\,{\rm{association}}\,{\rm{or}}\,{\rm{dissociation}}}}{{{\rm{Number}}\,{\rm{of}}\,{\rm{moles}}\,{\rm{of}}\,{\rm{particles}}\,{\rm{before}}\,{\rm{association}}\,{\rm{or}}\,{\rm{dissociation}}}}$
Always remember that the value of van’t Hoff factor is less than one in case of association and more than one in case of dissociation. We know that KCl undergoes dissociation so its value
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

