
How many 4 letter words can be formed from the letters of the word ‘ANSWER’ ? How many of the words start with a vowel?
Answer
591.9k+ views
Hint: First we will find the 4 letter words from the letters of the word ‘ANSWER’ by arranging the total letters, i.e 6 in the form of ${}^{n}{{P}_{r}}$ . Then we will find the 4 letter words start with vowels for which two cases arise. The two vowels are A and E. After finding the number of ways for these cases, we have to add them for the final answer.
Complete step by step solution:
Here, first we will find the 4 letter words can be formed from the letters of the word ‘ANSWER’.
Total No’s of letters in the word ‘ANSWER’ is $=6$
To find the 4 letters word we have 4 vacant places. So, we can arrange them in the form of ${}^{6}{{P}_{4}}$ .
We know that –
${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$
Here, we get –
$\begin{align}
& {}^{6}{{P}_{4}}=\dfrac{6!}{\left( 6-4 \right)!} \\
& \Rightarrow \dfrac{6\times 5\times 4\times 3\times 2\times 1}{2\times 1} \\
\end{align}$
By cancelling the common factors from numerator and denominator, we get –
$\begin{align}
& =6\times 5\times 4\times 3 \\
& =360\text{ ways} \\
\end{align}$
Now, we will find the No’s of 4 letter words start with vowels.
There are two vowels in the word ‘ANSWER’ i.e. ‘A’ & ‘E’, so here two cases arises:
Case 1: Words start with a letter A.
If the first letter be ‘A’ then the word be: A __ __ __.
Here, we left with 3 vacant places from the remaining 5 letters.
So, we can arrange them in ${}^{5}{{P}_{3}}$ , we get –
$\begin{align}
& {}^{5}{{P}_{3}}=\dfrac{5!}{\left( 5-3 \right)!} \\
& =\dfrac{5\times 4\times 3\times 2\times 1}{2\times 1} \\
\end{align}$
By cancelling common factor from numerator & denominator we get –
$\begin{align}
& =5\times 4\times 3 \\
& =60\text{ ways} \\
\end{align}$
Case 2: Words start with a letter E.
If the first letter be ‘A’ then the word be: E __ __ __.
Here, we left with 3 vacant places from the remaining 5 letters.
So, we can arrange them in ${}^{5}{{P}_{3}}$ , we get –
$\begin{align}
& {}^{5}{{P}_{3}}=\dfrac{5!}{\left( 5-3 \right)!} \\
& =\dfrac{5\times 4\times 3\times 2\times 1}{2\times 1} \\
\end{align}$
By cancelling common factor from numerator & denominator we get –
$\begin{align}
& =5\times 4\times 3 \\
& =60\text{ ways} \\
\end{align}$
Therefore, all possible No’s of arrangement
$\begin{align}
& =60\text{ ways + 60 ways} \\
& \text{=120 ways} \\
\end{align}$
Hence, 360 ways of 4 letter words can be formed from the letters of the word ‘ANSWER’ and 120 ways of 4 letter words start with vowels.
Note: Students should solve this problem very carefully. They may make a mistake while taking the value of n as 4 (4 letter word) instead of 6.
Students can also solve this in an alternative way. Total No’s of letters in the word ‘ANSWER’ is 6.
So, $n=6.$
To find the 4 letter word we have 4 vacant places. i.e. $n!.$
Where, $n!=n\times \left( n-1 \right)\times \left( n-2 \right)\times ...........$
No’s of filling of ${{1}^{st}}$ place $n=6$
No’s of filling of remaining in ${{2}^{nd}}$ place is $\left( n-1 \right)=5$
No’s of filling of remaining in ${{3}^{rd}}$ place is $\left( n-2 \right)=4$
No’s of filling of last place is $\left( n-3 \right)=3$
Therefore, $n!=6\times 5\times 4\times 3$
$=360\text{ ways}$
Complete step by step solution:
Here, first we will find the 4 letter words can be formed from the letters of the word ‘ANSWER’.
Total No’s of letters in the word ‘ANSWER’ is $=6$
To find the 4 letters word we have 4 vacant places. So, we can arrange them in the form of ${}^{6}{{P}_{4}}$ .
We know that –
${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$
Here, we get –
$\begin{align}
& {}^{6}{{P}_{4}}=\dfrac{6!}{\left( 6-4 \right)!} \\
& \Rightarrow \dfrac{6\times 5\times 4\times 3\times 2\times 1}{2\times 1} \\
\end{align}$
By cancelling the common factors from numerator and denominator, we get –
$\begin{align}
& =6\times 5\times 4\times 3 \\
& =360\text{ ways} \\
\end{align}$
Now, we will find the No’s of 4 letter words start with vowels.
There are two vowels in the word ‘ANSWER’ i.e. ‘A’ & ‘E’, so here two cases arises:
Case 1: Words start with a letter A.
If the first letter be ‘A’ then the word be: A __ __ __.
Here, we left with 3 vacant places from the remaining 5 letters.
So, we can arrange them in ${}^{5}{{P}_{3}}$ , we get –
$\begin{align}
& {}^{5}{{P}_{3}}=\dfrac{5!}{\left( 5-3 \right)!} \\
& =\dfrac{5\times 4\times 3\times 2\times 1}{2\times 1} \\
\end{align}$
By cancelling common factor from numerator & denominator we get –
$\begin{align}
& =5\times 4\times 3 \\
& =60\text{ ways} \\
\end{align}$
Case 2: Words start with a letter E.
If the first letter be ‘A’ then the word be: E __ __ __.
Here, we left with 3 vacant places from the remaining 5 letters.
So, we can arrange them in ${}^{5}{{P}_{3}}$ , we get –
$\begin{align}
& {}^{5}{{P}_{3}}=\dfrac{5!}{\left( 5-3 \right)!} \\
& =\dfrac{5\times 4\times 3\times 2\times 1}{2\times 1} \\
\end{align}$
By cancelling common factor from numerator & denominator we get –
$\begin{align}
& =5\times 4\times 3 \\
& =60\text{ ways} \\
\end{align}$
Therefore, all possible No’s of arrangement
$\begin{align}
& =60\text{ ways + 60 ways} \\
& \text{=120 ways} \\
\end{align}$
Hence, 360 ways of 4 letter words can be formed from the letters of the word ‘ANSWER’ and 120 ways of 4 letter words start with vowels.
Note: Students should solve this problem very carefully. They may make a mistake while taking the value of n as 4 (4 letter word) instead of 6.
Students can also solve this in an alternative way. Total No’s of letters in the word ‘ANSWER’ is 6.
So, $n=6.$
To find the 4 letter word we have 4 vacant places. i.e. $n!.$
Where, $n!=n\times \left( n-1 \right)\times \left( n-2 \right)\times ...........$
No’s of filling of ${{1}^{st}}$ place $n=6$
No’s of filling of remaining in ${{2}^{nd}}$ place is $\left( n-1 \right)=5$
No’s of filling of remaining in ${{3}^{rd}}$ place is $\left( n-2 \right)=4$
No’s of filling of last place is $\left( n-3 \right)=3$
Therefore, $n!=6\times 5\times 4\times 3$
$=360\text{ ways}$
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

