Answer
Verified
410.1k+ views
Hint:
In this question we are asked to find the amount after years when some principle is invested at a rate, we will solve this by using the formula $A\left( t \right) = P{\left( {1 + \dfrac{r}{n}} \right)^{nt}}$, where Principal amount invested P, r rate of interest per annum and n tells us how frequently (at regular intervals) interest is compounded in a year, and this gives the amount at the end of t years. By substituting the values in the formula that are given in the question, we will get the required amount.
Complete step by step solution:
Given Principal amount invested P, r rate of interest per annum and n tells us how frequently (at regular intervals) interest is compounded in a year, and this gives the amount at the end of t years, i.e., $A\left( t \right) = P{\left( {1 + \dfrac{r}{n}} \right)^{nt}}$where P is the principle , r is the rate,
Now from the given data, $P = \$ 500$, $r = 6\% = \dfrac{6}{{100}}$and $n = 12$as it is compounded monthly,
By substituting the values in the formula we get,
$ \Rightarrow A\left( t \right) = P{\left( {1 + \dfrac{r}{n}} \right)^{nt}}$,
Now substituting the values we get,
$ \Rightarrow A\left( t \right) = 500{\left( {1 + \dfrac{{\dfrac{6}{{100}}}}{{12}}} \right)^{12t}}$
Now simplifying we get,
$ \Rightarrow A\left( t \right) = 500{\left( {1 + \dfrac{6}{{1200}}} \right)^{12t}}$,
Now again simplifying we get,
$ \Rightarrow A\left( t \right) = 500{\left( {1 + \dfrac{1}{{200}}} \right)^{12t}}$,
Now adding the terms inside the power we get,
$ \Rightarrow A\left( t \right) = 500{\left( {\dfrac{{200 + 1}}{{200}}} \right)^{12t}}$,
Now simplifying we get,
$ \Rightarrow A\left( t \right) = 500{\left( {\dfrac{{201}}{{200}}} \right)^{12t}}$,
So, amount when $\$500$ invested at 6% interest compounded monthly be worth after years is $500{\left( {\dfrac{{201}}{{200}}} \right)^{12t}}$.
$\therefore $ The amount when $\$500$ invested at 6% interest compounded monthly be worth after years will be equal to $500{\left( {\dfrac{{201}}{{200}}} \right)^{12t}}$.
Note:
Compound interest is the interest calculated on the principal and the interest accumulated over the previous period. It is different from the simple interest where interest is not added to the principal while calculating the interest during the next period.
In this question we are asked to find the amount after years when some principle is invested at a rate, we will solve this by using the formula $A\left( t \right) = P{\left( {1 + \dfrac{r}{n}} \right)^{nt}}$, where Principal amount invested P, r rate of interest per annum and n tells us how frequently (at regular intervals) interest is compounded in a year, and this gives the amount at the end of t years. By substituting the values in the formula that are given in the question, we will get the required amount.
Complete step by step solution:
Given Principal amount invested P, r rate of interest per annum and n tells us how frequently (at regular intervals) interest is compounded in a year, and this gives the amount at the end of t years, i.e., $A\left( t \right) = P{\left( {1 + \dfrac{r}{n}} \right)^{nt}}$where P is the principle , r is the rate,
Now from the given data, $P = \$ 500$, $r = 6\% = \dfrac{6}{{100}}$and $n = 12$as it is compounded monthly,
By substituting the values in the formula we get,
$ \Rightarrow A\left( t \right) = P{\left( {1 + \dfrac{r}{n}} \right)^{nt}}$,
Now substituting the values we get,
$ \Rightarrow A\left( t \right) = 500{\left( {1 + \dfrac{{\dfrac{6}{{100}}}}{{12}}} \right)^{12t}}$
Now simplifying we get,
$ \Rightarrow A\left( t \right) = 500{\left( {1 + \dfrac{6}{{1200}}} \right)^{12t}}$,
Now again simplifying we get,
$ \Rightarrow A\left( t \right) = 500{\left( {1 + \dfrac{1}{{200}}} \right)^{12t}}$,
Now adding the terms inside the power we get,
$ \Rightarrow A\left( t \right) = 500{\left( {\dfrac{{200 + 1}}{{200}}} \right)^{12t}}$,
Now simplifying we get,
$ \Rightarrow A\left( t \right) = 500{\left( {\dfrac{{201}}{{200}}} \right)^{12t}}$,
So, amount when $\$500$ invested at 6% interest compounded monthly be worth after years is $500{\left( {\dfrac{{201}}{{200}}} \right)^{12t}}$.
$\therefore $ The amount when $\$500$ invested at 6% interest compounded monthly be worth after years will be equal to $500{\left( {\dfrac{{201}}{{200}}} \right)^{12t}}$.
Note:
Compound interest is the interest calculated on the principal and the interest accumulated over the previous period. It is different from the simple interest where interest is not added to the principal while calculating the interest during the next period.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE