![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
When 75 is added to the 75% of a number, it gives the same number. Find the number?
Answer
387.3k+ views
Hint: We will first assume the number we want to find. Then try to make an equation using the relations given in the question. We will use general methods to simplify and get the value of the variable. We should also be familiar with methods like substitution, elimination etc. for solving the equations.
Complete step-by-step solution:
We will first assume the number is x.
We can write 75% of a number as
$ = 75\% \times \,x$
$ = \dfrac{{75x}}{{100}}$
When we add 75 to the 75% of the number, we get
$ = \dfrac{{75x}}{{100}} + 75$
Since we have given when 75 is added to 75% of the number, we get the same number.
We can write
$ \Rightarrow \dfrac{{75x}}{{100}} + 75 = x$
We simplify the equation, by dividing $\dfrac{{75x}}{{100}}$ by 25
$ \Rightarrow \dfrac{{3x}}{4} + 75 = x$
We transpose $\dfrac{{3x}}{4}$ to the right side
$ \Rightarrow 75 = x - \dfrac{{3x}}{4}$
$ \Rightarrow 75 = \dfrac{x}{4}$
$ \Rightarrow x = 300$
So, the number when 75 is added to 75% of the number, we get the same number is 300.
Note: We can easily solve the equation, but the most important thing is finding the relation between the variables. Sometimes, it becomes easy to find the relation if we assume two variables. Then using the substitution method, we will substitute another variable in terms of the first variable.
Complete step-by-step solution:
We will first assume the number is x.
We can write 75% of a number as
$ = 75\% \times \,x$
$ = \dfrac{{75x}}{{100}}$
When we add 75 to the 75% of the number, we get
$ = \dfrac{{75x}}{{100}} + 75$
Since we have given when 75 is added to 75% of the number, we get the same number.
We can write
$ \Rightarrow \dfrac{{75x}}{{100}} + 75 = x$
We simplify the equation, by dividing $\dfrac{{75x}}{{100}}$ by 25
$ \Rightarrow \dfrac{{3x}}{4} + 75 = x$
We transpose $\dfrac{{3x}}{4}$ to the right side
$ \Rightarrow 75 = x - \dfrac{{3x}}{4}$
$ \Rightarrow 75 = \dfrac{x}{4}$
$ \Rightarrow x = 300$
So, the number when 75 is added to 75% of the number, we get the same number is 300.
Note: We can easily solve the equation, but the most important thing is finding the relation between the variables. Sometimes, it becomes easy to find the relation if we assume two variables. Then using the substitution method, we will substitute another variable in terms of the first variable.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Express the following as a fraction and simplify a class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The length and width of a rectangle are in ratio of class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The ratio of the income to the expenditure of a family class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you write 025 million in scientific notatio class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you convert 295 meters per second to kilometers class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many ounces are in 500 mL class 8 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is BLO What is the full form of BLO class 8 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Advantages and disadvantages of science
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
List some examples of Rabi and Kharif crops class 8 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)