
How many 8-digit numbers are there in all?
Answer
580.5k+ views
Hint:
Here, we have to use the concept of permutation for calculating the total number of 8 digit numbers in all. Permutations may be defined as the different ways in which a collection of items can be arranged, in a particular order or sequence. We will find a number of ways to assign different numbers in different places of 8 digit numbers. The arrangement will give us the total number of 8 digit numbers present in total.
Complete step by step solution:
Here, there are 8 different places and we can arrange 10 different number at different position except for the position of the first digit.
We know that for the first place digit in the 8 digit number there are only 9 choices available i.e. from 1 to 9. We cannot put 0 in the first place digit because then it will become a 7 digit number.
Therefore, total number of permutation for the first digit in the 8 digit number \[ = {}^9{{\rm{P}}_1} = \dfrac{{9!}}{{{\rm{(9}} - {\rm{1)}}!}} = 9\]
Now, we know that for the rest of the 7 digits in the 8 digit number there are 10 choices available that are from 0 to 9.
Therefore, total number of permutation for all the remaining 7 digits in the 8 digit number \[ = {}^{10}{{\rm{P}}_1} = \dfrac{{10!}}{{{\rm{(10}} - {\rm{1)}}!}} = 10\]
So, total number of 8 digit number in all \[ = 9 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 = 90000000\]
Hence, there are a total of 90,000,000 8-digit numbers.
Note:
We can solve the given question using the following formula:
Total 8 digit number\[ = \] (Largest 8 digit number \[ - \] Smallest 8 digit number)\[ + 1\]
Total 8 digit number \[ = \left( {99,999,999 - 10,000,000} \right) + 1 = 90000000\]
Here, we have to use the concept of permutation for calculating the total number of 8 digit numbers in all. Permutations may be defined as the different ways in which a collection of items can be arranged, in a particular order or sequence. We will find a number of ways to assign different numbers in different places of 8 digit numbers. The arrangement will give us the total number of 8 digit numbers present in total.
Complete step by step solution:
Here, there are 8 different places and we can arrange 10 different number at different position except for the position of the first digit.
We know that for the first place digit in the 8 digit number there are only 9 choices available i.e. from 1 to 9. We cannot put 0 in the first place digit because then it will become a 7 digit number.
Therefore, total number of permutation for the first digit in the 8 digit number \[ = {}^9{{\rm{P}}_1} = \dfrac{{9!}}{{{\rm{(9}} - {\rm{1)}}!}} = 9\]
Now, we know that for the rest of the 7 digits in the 8 digit number there are 10 choices available that are from 0 to 9.
Therefore, total number of permutation for all the remaining 7 digits in the 8 digit number \[ = {}^{10}{{\rm{P}}_1} = \dfrac{{10!}}{{{\rm{(10}} - {\rm{1)}}!}} = 10\]
So, total number of 8 digit number in all \[ = 9 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 = 90000000\]
Hence, there are a total of 90,000,000 8-digit numbers.
Note:
We can solve the given question using the following formula:
Total 8 digit number\[ = \] (Largest 8 digit number \[ - \] Smallest 8 digit number)\[ + 1\]
Total 8 digit number \[ = \left( {99,999,999 - 10,000,000} \right) + 1 = 90000000\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

