
930 Deepawali greeting cards are exchanged amongst the students of a class. If every student sends a card to every other student then what is the number of students in the class?
Answer
612.3k+ views
Hint: In this question apply the concept of combination i.e. when one student sends a card to another student and that student sends a card to the previous one then the number of possible ways is 2, so use this concept to reach the solution of the question.
Let us consider there are no students in the class.
So, if every students sends a card to every other student i.e. A gives a card to B and B gives a card to A, so between two students there are two ways of distributing the cards, so, among n students according to combination property the number of possible ways is $2{}^n{C_2}$.
(Two multiplied by ${}^n{C_2}$ is because cards are exchanged amongst all students i.e. every student gives cards to every other student if not then two is not multiplied).
And it is given that there are 930 cards exchanged amongst the students of a class.
$ \Rightarrow 2{}^n{C_2} = 930$…………….. (1)
Now we all know that $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, so use this property in above equation we have,
${}^n{C_2} = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}$
Now we all know that $n! = n\left( {n - 1} \right)\left( {n - 2} \right)!$, so use this property in above equation we have,
${}^n{C_2} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{2!\left( {n - 2} \right)!}} = \dfrac{{n\left( {n - 1} \right)}}{{2 \times 1}}$
Therefore from equation (1) we have,
$ \Rightarrow 2\dfrac{{n\left( {n - 1} \right)}}{{2 \times 1}} = 930$
$
\Rightarrow {n^2} - n = 930 \\
\Rightarrow {n^2} - n - 930 = 0 \\
$
Now factorize this equation we have,
$
\Rightarrow {n^2} - 31n + 30n - 930 = 0 \\
\Rightarrow n\left( {n - 31} \right) + 30\left( {n - 31} \right) = 0 \\
\Rightarrow \left( {n + 30} \right)\left( {n - 31} \right) = 0 \\
\Rightarrow \left( {n + 30} \right) = 0,{\text{ }}\left( {n - 31} \right) = 0 \\
\Rightarrow n = - 30,{\text{ 31}} \\
$
But n should not be negative.
So the number of students in the class is 31.
So, this is the required answer.
Note: In such types of questions the key concept we have to remember is that when the cards is exchanged among n students then number of possible ways is $2{}^n{C_2}$, then apply the property of combination and construct the equation as above and simplify, we will get the required number of students in the class.
Let us consider there are no students in the class.
So, if every students sends a card to every other student i.e. A gives a card to B and B gives a card to A, so between two students there are two ways of distributing the cards, so, among n students according to combination property the number of possible ways is $2{}^n{C_2}$.
(Two multiplied by ${}^n{C_2}$ is because cards are exchanged amongst all students i.e. every student gives cards to every other student if not then two is not multiplied).
And it is given that there are 930 cards exchanged amongst the students of a class.
$ \Rightarrow 2{}^n{C_2} = 930$…………….. (1)
Now we all know that $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, so use this property in above equation we have,
${}^n{C_2} = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}$
Now we all know that $n! = n\left( {n - 1} \right)\left( {n - 2} \right)!$, so use this property in above equation we have,
${}^n{C_2} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{2!\left( {n - 2} \right)!}} = \dfrac{{n\left( {n - 1} \right)}}{{2 \times 1}}$
Therefore from equation (1) we have,
$ \Rightarrow 2\dfrac{{n\left( {n - 1} \right)}}{{2 \times 1}} = 930$
$
\Rightarrow {n^2} - n = 930 \\
\Rightarrow {n^2} - n - 930 = 0 \\
$
Now factorize this equation we have,
$
\Rightarrow {n^2} - 31n + 30n - 930 = 0 \\
\Rightarrow n\left( {n - 31} \right) + 30\left( {n - 31} \right) = 0 \\
\Rightarrow \left( {n + 30} \right)\left( {n - 31} \right) = 0 \\
\Rightarrow \left( {n + 30} \right) = 0,{\text{ }}\left( {n - 31} \right) = 0 \\
\Rightarrow n = - 30,{\text{ 31}} \\
$
But n should not be negative.
So the number of students in the class is 31.
So, this is the required answer.
Note: In such types of questions the key concept we have to remember is that when the cards is exchanged among n students then number of possible ways is $2{}^n{C_2}$, then apply the property of combination and construct the equation as above and simplify, we will get the required number of students in the class.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

State the laws of reflection of light

Name the metals and nonmetals in the first twenty class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

