Answer
Verified
450.9k+ views
Hint: We will compute the values of the resistance and the current of both the bulbs, as, in the options, the ratios of the resistance and the current values of both the bulbs is given. Then, we will divide these values to find their ratios. Thus, we will obtain the ratio of the values of the resistance and the current.
Formulae used:
\[\begin{align}
& R=\dfrac{{{V}^{2}}}{P} \\
& I=\dfrac{P}{V} \\
\end{align}\]
Complete step-by-step solution
The formula that relates the power, the voltage, and the resistance of the bulb is given as follows.
\[R=\dfrac{{{V}^{2}}}{P}\]
Where R is the resistance, V is the voltage and P is the power.
The formula that relates the power, the voltage, and the resistance of the bulb is given as follows.
\[I=\dfrac{P}{V}\]
Where I is the current, V is the voltage and P is the power.
Firstly, we will compute the resistance values of both the bulbs.
From the data, we have the data as follows.
The power of bulb 1 is 100 watt.
The voltage using which the bulb glows is 200 volt.
Bulb 1: The resistance value of the first bulb is,
\[\begin{align}
& R=\dfrac{{{V}^{2}}}{P} \\
&\Rightarrow {{R}_{1}}=\dfrac{{{200}^{2}}}{100} \\
&\Rightarrow {{R}_{1}}=400\Omega \\
\end{align}\]
From the data, we have the data as follows.
The power of bulb 2 is 200 watt.
The voltage using which the bulb glows is 100 volt.
Bulb 2: The resistance value of the second bulb is,
\[\begin{align}
& R=\dfrac{{{V}^{2}}}{P} \\
&\Rightarrow {{R}_{2}}=\dfrac{{{100}^{2}}}{200} \\
&\Rightarrow {{R}_{2}}=50\Omega \\
\end{align}\]
The ratio of the resistance values of the bulbs is calculated as follows.
\[\begin{align}
& \dfrac{{{R}_{1}}}{{{R}_{2}}}=\dfrac{400}{50} \\
&\Rightarrow \dfrac{{{R}_{1}}}{{{R}_{2}}}=\dfrac{8}{1} \\
\end{align}\]
Therefore, the ratio of the resistance values of the bulbs is 8:1.
Now, we will compute the current values of both the bulbs.
From the data, we have the data as follows.
The power of bulb 1 is 100 watt.
The voltage using which the bulb glows is 200 volt.
Bulb 1: The current value of the first bulb is,
\[\begin{align}
& I=\dfrac{P}{V} \\
& {{I}_{1}}=\dfrac{100}{200} \\
&\Rightarrow {{I}_{1}}=\dfrac{1}{2}A \\
\end{align}\]
From the data, we have the data as follows.
The power of bulb 2 is 200 watt.
The voltage using which the bulb glows is 100 volt.
Bulb 2: The current value of the second bulb is,
\[\begin{align}
& I=\dfrac{P}{V} \\
&\Rightarrow {{I}_{2}}=\dfrac{200}{100} \\
&\Rightarrow {{I}_{2}}=\dfrac{2}{1}A \\
\end{align}\]
The ratio of the current values of the bulbs is calculated as follows.
\[\begin{align}
& \dfrac{{{I}_{1}}}{{{I}_{2}}}=\dfrac{1}{2}\times \dfrac{1}{2} \\
&\Rightarrow \dfrac{{{I}_{1}}}{{{I}_{2}}}=\dfrac{1}{4} \\
\end{align}\]
Therefore, the ratio of the current values of the bulbs is 1:4.
\[ \therefore \]The maximum current ratings in the ratio of 1:4.
As, the maximum current ratings in the ratio of 1:4, thus, option (B) is correct.
Note: The things to be on your finger-tips for further information on solving these types of problems are: The units of the physical parameters should be known. Even the formula for computing the values of the power, current, voltage, and resistance should be known.
Formulae used:
\[\begin{align}
& R=\dfrac{{{V}^{2}}}{P} \\
& I=\dfrac{P}{V} \\
\end{align}\]
Complete step-by-step solution
The formula that relates the power, the voltage, and the resistance of the bulb is given as follows.
\[R=\dfrac{{{V}^{2}}}{P}\]
Where R is the resistance, V is the voltage and P is the power.
The formula that relates the power, the voltage, and the resistance of the bulb is given as follows.
\[I=\dfrac{P}{V}\]
Where I is the current, V is the voltage and P is the power.
Firstly, we will compute the resistance values of both the bulbs.
From the data, we have the data as follows.
The power of bulb 1 is 100 watt.
The voltage using which the bulb glows is 200 volt.
Bulb 1: The resistance value of the first bulb is,
\[\begin{align}
& R=\dfrac{{{V}^{2}}}{P} \\
&\Rightarrow {{R}_{1}}=\dfrac{{{200}^{2}}}{100} \\
&\Rightarrow {{R}_{1}}=400\Omega \\
\end{align}\]
From the data, we have the data as follows.
The power of bulb 2 is 200 watt.
The voltage using which the bulb glows is 100 volt.
Bulb 2: The resistance value of the second bulb is,
\[\begin{align}
& R=\dfrac{{{V}^{2}}}{P} \\
&\Rightarrow {{R}_{2}}=\dfrac{{{100}^{2}}}{200} \\
&\Rightarrow {{R}_{2}}=50\Omega \\
\end{align}\]
The ratio of the resistance values of the bulbs is calculated as follows.
\[\begin{align}
& \dfrac{{{R}_{1}}}{{{R}_{2}}}=\dfrac{400}{50} \\
&\Rightarrow \dfrac{{{R}_{1}}}{{{R}_{2}}}=\dfrac{8}{1} \\
\end{align}\]
Therefore, the ratio of the resistance values of the bulbs is 8:1.
Now, we will compute the current values of both the bulbs.
From the data, we have the data as follows.
The power of bulb 1 is 100 watt.
The voltage using which the bulb glows is 200 volt.
Bulb 1: The current value of the first bulb is,
\[\begin{align}
& I=\dfrac{P}{V} \\
& {{I}_{1}}=\dfrac{100}{200} \\
&\Rightarrow {{I}_{1}}=\dfrac{1}{2}A \\
\end{align}\]
From the data, we have the data as follows.
The power of bulb 2 is 200 watt.
The voltage using which the bulb glows is 100 volt.
Bulb 2: The current value of the second bulb is,
\[\begin{align}
& I=\dfrac{P}{V} \\
&\Rightarrow {{I}_{2}}=\dfrac{200}{100} \\
&\Rightarrow {{I}_{2}}=\dfrac{2}{1}A \\
\end{align}\]
The ratio of the current values of the bulbs is calculated as follows.
\[\begin{align}
& \dfrac{{{I}_{1}}}{{{I}_{2}}}=\dfrac{1}{2}\times \dfrac{1}{2} \\
&\Rightarrow \dfrac{{{I}_{1}}}{{{I}_{2}}}=\dfrac{1}{4} \\
\end{align}\]
Therefore, the ratio of the current values of the bulbs is 1:4.
\[ \therefore \]The maximum current ratings in the ratio of 1:4.
As, the maximum current ratings in the ratio of 1:4, thus, option (B) is correct.
Note: The things to be on your finger-tips for further information on solving these types of problems are: The units of the physical parameters should be known. Even the formula for computing the values of the power, current, voltage, and resistance should be known.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE