Answer
Verified
396.6k+ views
Hint:Potential energy is the energy in a body stored due to its state of motion. When an object is stretched to some length it can be considered as that energy stored in it as a restoring force and potential energy is given as $P.E = \dfrac{1}{2}k{x^2}$ where $k$ is some proportionality constant with a force as $F = kx$.
Complete step by step answer:
Let us suppose object is applied with a force of $F = 200\,N$ and its length is increased by $x = 1\,mm$
Convert the length in millimetre into metre as: $1mm = {10^{ - 3}}\,m$ so we get,
$F = 200\,N$
$\Rightarrow x = {10^{ - 3}}\,m$
Comparing this with the equation $F = kx$ we can write it’s as:
$k = \dfrac{{200}}{{{{10}^{ - 3}}}}N{m^{ - 1}}$
Now, we know the proportionality constant value,
So, using the formula of potential energy due to increase in length is $P.E = \dfrac{1}{2}k{x^2}$
We have, $P.E = \dfrac{1}{2}k{x^2}$
Put $k = \dfrac{{200}}{{{{10}^{ - 3}}}}N{m^{ - 1}}$ and $x = {10^{ - 3}}m$ in above equation we get,
$P.E = \dfrac{1}{2} \times 200 \times {10^{ - 3}}$
$\therefore P.E = 0.1\,J$
So, the potential energy stored in the object due to increase in its length is $P.E = 0.1\,J$.
Hence, the correct option is D.
Note:Whenever an object length gets increased after applying some force, objects have a tendency to store energy to come back into their original state and this restoring force always acts opposite to that of applied force and hence this restoring energy behaves as potential energy of the body. $F = kx$ This equation is generally referred to as Hooke’s law.
Complete step by step answer:
Let us suppose object is applied with a force of $F = 200\,N$ and its length is increased by $x = 1\,mm$
Convert the length in millimetre into metre as: $1mm = {10^{ - 3}}\,m$ so we get,
$F = 200\,N$
$\Rightarrow x = {10^{ - 3}}\,m$
Comparing this with the equation $F = kx$ we can write it’s as:
$k = \dfrac{{200}}{{{{10}^{ - 3}}}}N{m^{ - 1}}$
Now, we know the proportionality constant value,
So, using the formula of potential energy due to increase in length is $P.E = \dfrac{1}{2}k{x^2}$
We have, $P.E = \dfrac{1}{2}k{x^2}$
Put $k = \dfrac{{200}}{{{{10}^{ - 3}}}}N{m^{ - 1}}$ and $x = {10^{ - 3}}m$ in above equation we get,
$P.E = \dfrac{1}{2} \times 200 \times {10^{ - 3}}$
$\therefore P.E = 0.1\,J$
So, the potential energy stored in the object due to increase in its length is $P.E = 0.1\,J$.
Hence, the correct option is D.
Note:Whenever an object length gets increased after applying some force, objects have a tendency to store energy to come back into their original state and this restoring force always acts opposite to that of applied force and hence this restoring energy behaves as potential energy of the body. $F = kx$ This equation is generally referred to as Hooke’s law.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE