Answer
Verified
431.4k+ views
Hint: In order to answer the given question we need to apply the voltage-current relation from Ohm’s law in the given circuit. Also, we need to apply Kirchhoff’s law to the loops in the given circuit. After that we need to solve the obtained equations and finally conclude with the solution of the given question. Therefore, we need to solve the equation formed to conclude with the solution.
Complete step by step answer:
Let us redraw the circuit and name the loops in the given circuit.
Also let us assume that current $ {I_1} $ is flowing through the $ 10\Omega $ resistor.
And current flowing through $ {P_2}B $ be $ I - {I_1} $
Now we need to apply KVL to the closed loop $ A{P_2}{P_1}CA $
$ - 10{I_1} - 2I + 5 = 0 $
$ \Rightarrow 2I + 10{I_1} = 5............(i) $
Similarly by applying KVL to the closed loop $ {P_2}BD{P_1}{P_2} $ , we get,
$ 2 - 1(I - {I_1}) + 10y = 0 $
$ \Rightarrow I - 11{I_1} = 2...........(ii) $
Now on multiplying equation (ii) by $ 2 $ we get,
$ 2I - 22{I_1} = 4 $ …………..(iii)
Step four
Now, we need to subtract equation (iii) from equation (i)
By doing so, we get,
$ 32{I_1} = 1 $
$ \Rightarrow {I_1} = \dfrac{1}{{32}} = 0.031A $
Therefore, the required amount of current that is flowing through the $ 10\Omega $ resistance is $ 0.031A $ .
Hence, the correct answer is option (C).
Note: There are two rules according to Kirchhoff’s law. One is Kirchhoff voltage law (KVL) and the other is Kirchhoff’s current law (KCL). According to KVL the sum of all the potential in a closed loop is zero. Similarly according to KCL the sum of all the current in a closed loop is zero. Both KVL and KCL follow the conservation of energy across a closed loop or path.
Complete step by step answer:
Let us redraw the circuit and name the loops in the given circuit.
Also let us assume that current $ {I_1} $ is flowing through the $ 10\Omega $ resistor.
And current flowing through $ {P_2}B $ be $ I - {I_1} $
Now we need to apply KVL to the closed loop $ A{P_2}{P_1}CA $
$ - 10{I_1} - 2I + 5 = 0 $
$ \Rightarrow 2I + 10{I_1} = 5............(i) $
Similarly by applying KVL to the closed loop $ {P_2}BD{P_1}{P_2} $ , we get,
$ 2 - 1(I - {I_1}) + 10y = 0 $
$ \Rightarrow I - 11{I_1} = 2...........(ii) $
Now on multiplying equation (ii) by $ 2 $ we get,
$ 2I - 22{I_1} = 4 $ …………..(iii)
Step four
Now, we need to subtract equation (iii) from equation (i)
By doing so, we get,
$ 32{I_1} = 1 $
$ \Rightarrow {I_1} = \dfrac{1}{{32}} = 0.031A $
Therefore, the required amount of current that is flowing through the $ 10\Omega $ resistance is $ 0.031A $ .
Hence, the correct answer is option (C).
Note: There are two rules according to Kirchhoff’s law. One is Kirchhoff voltage law (KVL) and the other is Kirchhoff’s current law (KCL). According to KVL the sum of all the potential in a closed loop is zero. Similarly according to KCL the sum of all the current in a closed loop is zero. Both KVL and KCL follow the conservation of energy across a closed loop or path.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE