Answer
Verified
449.7k+ views
Hint: The given problem is a work and time problem. We will use the unitary method to solve this problem. We are given the time consumed by A to finish a work and the time consumed by A and B together to finish the work. Using these given things we are asked to find the time consumed by B alone to finish the work. We will also introduce algebraic expressions to solve this problem.
Complete step-by-step answer:
A can do a piece of work in $ 8 $ days.
Let the work done by A in one day is $ \dfrac{1}{8} $ th of the work done.
A and B together can do the same work in 6 days.
So, the work done by A alone is $ 6 \times \dfrac{1}{8} $ of the total work.
$ 6 \times \dfrac{1}{8} = \dfrac{6}{8} $
Now the rest work be done by B let it be $ x $ .
So, $ \dfrac{6}{8} + x = 1 $
$ \Rightarrow x = 1 - \dfrac{6}{8} = \dfrac{2}{8} $
The work is for $ 6 $ days.
So, the actual work done by B for 1 day is $ \dfrac{1}{6} \times \dfrac{2}{8} = \dfrac{1}{{24}} $
Since, B takes $ 1 $ a day to complete $ \dfrac{1}{{24}} $ part of the work.
This means B takes $ 24 $ days to finish the work alone.
So, the correct answer is “$ 24 $”.
Note: The given problem is based upon a statement containing some information which we have used to find an algebraic expression. So, formulate the question properly to calculate the result. The result we are obtaining is for $ 6 $ days which we still have to calculate for one day and this can be done by multiplying the reciprocal of $ 6 $ in it.
Complete step-by-step answer:
A can do a piece of work in $ 8 $ days.
Let the work done by A in one day is $ \dfrac{1}{8} $ th of the work done.
A and B together can do the same work in 6 days.
So, the work done by A alone is $ 6 \times \dfrac{1}{8} $ of the total work.
$ 6 \times \dfrac{1}{8} = \dfrac{6}{8} $
Now the rest work be done by B let it be $ x $ .
So, $ \dfrac{6}{8} + x = 1 $
$ \Rightarrow x = 1 - \dfrac{6}{8} = \dfrac{2}{8} $
The work is for $ 6 $ days.
So, the actual work done by B for 1 day is $ \dfrac{1}{6} \times \dfrac{2}{8} = \dfrac{1}{{24}} $
Since, B takes $ 1 $ a day to complete $ \dfrac{1}{{24}} $ part of the work.
This means B takes $ 24 $ days to finish the work alone.
So, the correct answer is “$ 24 $”.
Note: The given problem is based upon a statement containing some information which we have used to find an algebraic expression. So, formulate the question properly to calculate the result. The result we are obtaining is for $ 6 $ days which we still have to calculate for one day and this can be done by multiplying the reciprocal of $ 6 $ in it.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE