Answer
Verified
494.1k+ views
Hint: In this problem first, we evaluate the distance travelled by train A after starting from 10 a.m. up to 11:00 a.m. at a speed of 65 kilometer per hour. At 11:00 a.m. train B also starts moving from another station with the speed 35 kilometer per hour. The distance obtained when a train travelled up to 11 is subtracted from 390 kilometer. Now the net distance between two trains is evaluated and is equated with time.
Complete step-by-step answer:
As per the data given in the problem statement,
The distance between two stations = 390 km
Speed of train A after starting at 10 a.m. = 65 kmph
Speed of train B after starting at 11 a.m. = 35 kmph
Let, the distance travelled by train A in one hour be D.
Also, by using the speed formula: $speed=\dfrac{dis\tan ce}{time}$.
This implies that the total distance covered by 11 a.m. is
$\begin{align}
& D=speed\times time \\
& =65\times 1 \\
& =65km \\
\end{align}$
After 11 a.m. the train B also starts moving. This implies that the net distance left between the trains = 390 – 65 = 325 km.
Let, t be the time after which both the trains meet.
This implies that distance covered by train A in time t $=speed\times time=65t$ .
Also, distance covered by train B in time t $==speed\times time=35t$.
The sum of the distance must be equal to 325 km.
$\begin{align}
& 65t+35t=325 \\
& 100t=325 \\
& t=\dfrac{325}{100} \\
& t=3.25hours \\
\end{align}$
This implies that they will meet after 11 + 3.25 = 14.25 i.e. 2:25 p.m.
Note: The key step in solving this problem is the knowledge of the relationship between speed and distance. By using the statement provided in the question we can easily formulate expressions for distance of trains. Students must take care that they are adding time in the final expression. Also, time must be represented in p.m. because the given data is in a.m.
Complete step-by-step answer:
As per the data given in the problem statement,
The distance between two stations = 390 km
Speed of train A after starting at 10 a.m. = 65 kmph
Speed of train B after starting at 11 a.m. = 35 kmph
Let, the distance travelled by train A in one hour be D.
Also, by using the speed formula: $speed=\dfrac{dis\tan ce}{time}$.
This implies that the total distance covered by 11 a.m. is
$\begin{align}
& D=speed\times time \\
& =65\times 1 \\
& =65km \\
\end{align}$
After 11 a.m. the train B also starts moving. This implies that the net distance left between the trains = 390 – 65 = 325 km.
Let, t be the time after which both the trains meet.
This implies that distance covered by train A in time t $=speed\times time=65t$ .
Also, distance covered by train B in time t $==speed\times time=35t$.
The sum of the distance must be equal to 325 km.
$\begin{align}
& 65t+35t=325 \\
& 100t=325 \\
& t=\dfrac{325}{100} \\
& t=3.25hours \\
\end{align}$
This implies that they will meet after 11 + 3.25 = 14.25 i.e. 2:25 p.m.
Note: The key step in solving this problem is the knowledge of the relationship between speed and distance. By using the statement provided in the question we can easily formulate expressions for distance of trains. Students must take care that they are adding time in the final expression. Also, time must be represented in p.m. because the given data is in a.m.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE