
A and B can do a job together in 7 days. A is $1\dfrac{3}{4}$ times as efficient as B. The same job can be done by A alone in:
A.$9\dfrac{1}{3}$ days
B.11 days
C.$12\dfrac{1}{4}$ days
D.$16\dfrac{1}{3}$ days
Answer
484.8k+ views
Hint: In this question, we need to determine the number of days in which A can complete the work alone. For this, we will use the unitary method for calculating the one-day work of A and B and then, substituting those values in work done in a day by A and B together is the summation of the work done by A alone and B alone.
Complete step-by-step answer:
Let A alone can finish the job in A days and B alone can do the same job in B days.
According to the question, A is $\left( {1\dfrac{3}{4} = \dfrac{7}{4}} \right)$ times as efficient as B, which implies that A can complete the job in less time as compared with B or B takes more time than A to complete the wok.
So, the time taken by B to complete the work alone is given by $B = \dfrac{{7A}}{4}$
Also,
A’s one day work is given as ${A_{one{\text{ day}}}} = \dfrac{1}{A}$
B’s one day work is given as ${B_{one{\text{ day}}}} = \dfrac{1}{B} = \dfrac{4}{{7A}}$
Now, A and B can complete the work working together for 7 days.
So, one day work of A and B working together is given as ${\left( {A + B} \right)_{one{\text{ day}}}} = \dfrac{1}{7}$
As the work is done in a day by A and B is the summation of the work done by A alone and B alone. So, ${\left( {A + B} \right)_{one{\text{ day}}}} = {A_{one{\text{ day}}}} + {B_{one{\text{ day}}}}$.
Now, substituting ${A_{one{\text{ day}}}} = \dfrac{1}{A}$, ${B_{one{\text{ day}}}} = \dfrac{1}{B} = \dfrac{4}{{7A}}$ and ${\left( {A + B} \right)_{one{\text{ day}}}} = \dfrac{1}{7}$ in the equation ${\left( {A + B} \right)_{one{\text{ day}}}} = {A_{one{\text{ day}}}} + {B_{one{\text{ day}}}}$ to determine the total number of days required by A to complete the work alone.
$
{\left( {A + B} \right)_{one{\text{ day}}}} = {A_{one{\text{ day}}}} + {B_{one{\text{ day}}}} \\
\dfrac{1}{7} = \dfrac{1}{A} + \dfrac{4}{{7A}} \\
\dfrac{1}{7} = \dfrac{{7 + 4}}{{7A}} \\
\dfrac{1}{7} = \dfrac{{11}}{{7A}} \\
A = 11{\text{ days}} \\
$
Hence, A can complete the work while working alone in 11 days and is $1\dfrac{3}{4}$ times as efficient as B.
So, the correct answer is “Option B”.
Note: Students must be careful while dealing with the efficiencies of the persons. If the person is more efficient then, he/she can do the work in less time than the person with lesser efficiency. Moreover, here we have converted the mixed fraction in a proper fraction by following the rule $a\dfrac{b}{c} = \dfrac{{ac + b}}{c}$.
Complete step-by-step answer:
Let A alone can finish the job in A days and B alone can do the same job in B days.
According to the question, A is $\left( {1\dfrac{3}{4} = \dfrac{7}{4}} \right)$ times as efficient as B, which implies that A can complete the job in less time as compared with B or B takes more time than A to complete the wok.
So, the time taken by B to complete the work alone is given by $B = \dfrac{{7A}}{4}$
Also,
A’s one day work is given as ${A_{one{\text{ day}}}} = \dfrac{1}{A}$
B’s one day work is given as ${B_{one{\text{ day}}}} = \dfrac{1}{B} = \dfrac{4}{{7A}}$
Now, A and B can complete the work working together for 7 days.
So, one day work of A and B working together is given as ${\left( {A + B} \right)_{one{\text{ day}}}} = \dfrac{1}{7}$
As the work is done in a day by A and B is the summation of the work done by A alone and B alone. So, ${\left( {A + B} \right)_{one{\text{ day}}}} = {A_{one{\text{ day}}}} + {B_{one{\text{ day}}}}$.
Now, substituting ${A_{one{\text{ day}}}} = \dfrac{1}{A}$, ${B_{one{\text{ day}}}} = \dfrac{1}{B} = \dfrac{4}{{7A}}$ and ${\left( {A + B} \right)_{one{\text{ day}}}} = \dfrac{1}{7}$ in the equation ${\left( {A + B} \right)_{one{\text{ day}}}} = {A_{one{\text{ day}}}} + {B_{one{\text{ day}}}}$ to determine the total number of days required by A to complete the work alone.
$
{\left( {A + B} \right)_{one{\text{ day}}}} = {A_{one{\text{ day}}}} + {B_{one{\text{ day}}}} \\
\dfrac{1}{7} = \dfrac{1}{A} + \dfrac{4}{{7A}} \\
\dfrac{1}{7} = \dfrac{{7 + 4}}{{7A}} \\
\dfrac{1}{7} = \dfrac{{11}}{{7A}} \\
A = 11{\text{ days}} \\
$
Hence, A can complete the work while working alone in 11 days and is $1\dfrac{3}{4}$ times as efficient as B.
So, the correct answer is “Option B”.
Note: Students must be careful while dealing with the efficiencies of the persons. If the person is more efficient then, he/she can do the work in less time than the person with lesser efficiency. Moreover, here we have converted the mixed fraction in a proper fraction by following the rule $a\dfrac{b}{c} = \dfrac{{ac + b}}{c}$.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
When Sambhaji Maharaj died a 11 February 1689 b 11 class 8 social science CBSE

Explain the system of Dual Government class 8 social science CBSE

What is Kayal in Geography class 8 social science CBSE

Who is the author of Kadambari AKalidas B Panini C class 8 social science CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Advantages and disadvantages of science
