Answer
Verified
496.2k+ views
Hint: Use the property of Boolean algebra which are $A.A = A,{\text{ }}A.A' = 0,{\text{ }}A\left( {1 + B'} \right) = A,{\text{ & }}\left( {A + A'} \right) = 1$ for solving this problem.
Complete step-by-step answer:
Given polynomial is $ABC + AB'C + A'B'C$ switching circuit representing the given polynomial is shown in figure (1), where A, B and C represents switches in ‘on’ position and A’, B’ and C’ represents them in ‘off’ position
Now we have to prove that
$ABC + AB'C + A'B'C = C\left( {A + B'} \right)$
Consider L.H.S
$ABC + AB'C + A'B'C$
Take AC common from first two terms
$ \Rightarrow AC\left( {B + B'} \right) + A'B'C$
As we know in Boolean algebra value of $\left( {B + B'} \right)$ is equal to one
$ \Rightarrow AC\left( {B + B'} \right) + A'B'C = AC + A'B'C$
Now take C as common
$ \Rightarrow AC + A'B'C$ = $C\left( {A + A'B'} \right).............\left( 1 \right)$
Now $\left( {A + A'B'} \right)$ is written as$\left( {A + A'} \right)\left( {A + B'} \right)$, property of Boolean algebra.
Because we know in Boolean algebra the value of $A.A = A,{\text{ }}A.A' = 0,{\text{ & }}A\left( {1 + B'} \right) = A$
So,
$
\left( {A + A'} \right)\left( {A + B'} \right) = A.A + A.B' + A.A' + A'B' \\
= A + AB' + 0 + A'B' \\
= A\left( {1 + B'} \right) + A'B' = A + A'B' \\
$
Therefore
$\left( {A + A'B'} \right) = \left( {A + A'} \right)\left( {A + B'} \right)$
Therefore from equation (1)
$ \Rightarrow ABC + AB'C + A'B'C = C\left( {A + A'B'} \right) = C\left( {A + A'} \right)\left( {A + B'} \right)$
Now as we know in Boolean algebra value of $\left( {A + A'} \right)$ is equal to one
$ \Rightarrow ABC + AB'C + A'B'C = C\left( {A + B'} \right)$
=R.H.S
Hence Proved.
And the equivalent representation is shown in figure (2), where A, B and C represents switches in ‘on’ position and A’, B’ and C’ represents them in ‘off’ position.
Note: Whenever we face such types of questions always remember some of the basic properties of the Boolean algebra which is stated above then using these properties simplify the given polynomial, we will get the required answer.
Complete step-by-step answer:
Given polynomial is $ABC + AB'C + A'B'C$ switching circuit representing the given polynomial is shown in figure (1), where A, B and C represents switches in ‘on’ position and A’, B’ and C’ represents them in ‘off’ position
Now we have to prove that
$ABC + AB'C + A'B'C = C\left( {A + B'} \right)$
Consider L.H.S
$ABC + AB'C + A'B'C$
Take AC common from first two terms
$ \Rightarrow AC\left( {B + B'} \right) + A'B'C$
As we know in Boolean algebra value of $\left( {B + B'} \right)$ is equal to one
$ \Rightarrow AC\left( {B + B'} \right) + A'B'C = AC + A'B'C$
Now take C as common
$ \Rightarrow AC + A'B'C$ = $C\left( {A + A'B'} \right).............\left( 1 \right)$
Now $\left( {A + A'B'} \right)$ is written as$\left( {A + A'} \right)\left( {A + B'} \right)$, property of Boolean algebra.
Because we know in Boolean algebra the value of $A.A = A,{\text{ }}A.A' = 0,{\text{ & }}A\left( {1 + B'} \right) = A$
So,
$
\left( {A + A'} \right)\left( {A + B'} \right) = A.A + A.B' + A.A' + A'B' \\
= A + AB' + 0 + A'B' \\
= A\left( {1 + B'} \right) + A'B' = A + A'B' \\
$
Therefore
$\left( {A + A'B'} \right) = \left( {A + A'} \right)\left( {A + B'} \right)$
Therefore from equation (1)
$ \Rightarrow ABC + AB'C + A'B'C = C\left( {A + A'B'} \right) = C\left( {A + A'} \right)\left( {A + B'} \right)$
Now as we know in Boolean algebra value of $\left( {A + A'} \right)$ is equal to one
$ \Rightarrow ABC + AB'C + A'B'C = C\left( {A + B'} \right)$
=R.H.S
Hence Proved.
And the equivalent representation is shown in figure (2), where A, B and C represents switches in ‘on’ position and A’, B’ and C’ represents them in ‘off’ position.
Note: Whenever we face such types of questions always remember some of the basic properties of the Boolean algebra which is stated above then using these properties simplify the given polynomial, we will get the required answer.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE