Answer
Verified
468.9k+ views
Hint: Using the unitary method we first find the work done by all of them in one hour individually. First we need to find the work done in one hour by all the candidates (A and B as C is not given). After this we need to equate the sum of all candidate’s work done in one hour to the time period of A, B and C working together.
The work done by all the candidates in one hour is given as:
\[\dfrac{\text{1}}{\text{A}}\text{+}\dfrac{\text{1}}{\text{B}}\text{+}\dfrac{\text{1}}{\text{C}}\]
where \[\text{A}\, \text{B}\, \text{C}\] are the candidates and their work done in one hour.
Complete step-by-step answer:
Work done by A alone in one hour is \[20\text{ hrs}\]
Work done by B alone in one hour is \[\text{24 hrs}\]
Work done by C alone in one hour is \[\text{x hrs}\]
The work done by all the candidates in one hour is given as:
\[\dfrac{\text{1}}{\text{A}}\text{+}\dfrac{\text{1}}{\text{B}}\text{+}\dfrac{\text{1}}{\text{C}}\]
Now equating the work done by all (\[8\] hours) in one hour we get the work done as \[\dfrac{1}{8}th\] of all the work done.
\[\dfrac{\text{1}}{\text{A}}\text{+}\dfrac{\text{1}}{\text{B}}\text{+}\dfrac{\text{1}}{\text{C}}=\dfrac{1}{8}\]
\[\dfrac{\text{1}}{\text{20}}\text{+}\dfrac{\text{1}}{\text{24}}\text{+}\dfrac{\text{1}}{\text{x}}=\dfrac{1}{8}\]
\[\dfrac{\text{1}}{\text{x}}=\dfrac{1}{8}-\dfrac{\text{1}}{\text{20}}\text{+}\dfrac{\text{1}}{\text{24}}\]
\[\dfrac{\text{1}}{\text{x}}=\dfrac{15-6+5}{120}\]
\[\dfrac{\text{1}}{\text{x}}=\dfrac{4}{120}\]
\[x=30\text{ days}\]
\[\therefore \] C alone will take \[30\text{ days}\] to complete the work.
Note: Students may go wrong while calculating the total work for each individual, the total work is taken as unit \[1\]. Therefore, \[\dfrac{1}{20},\text{ }\dfrac{1}{24}\] and \[\dfrac{1}{x}\] are unit of work done by A, B and C in the time period of one hour. Hence, we need to find the total number of work done by C based on one hour.
The work done by all the candidates in one hour is given as:
\[\dfrac{\text{1}}{\text{A}}\text{+}\dfrac{\text{1}}{\text{B}}\text{+}\dfrac{\text{1}}{\text{C}}\]
where \[\text{A}\, \text{B}\, \text{C}\] are the candidates and their work done in one hour.
Complete step-by-step answer:
Work done by A alone in one hour is \[20\text{ hrs}\]
Work done by B alone in one hour is \[\text{24 hrs}\]
Work done by C alone in one hour is \[\text{x hrs}\]
The work done by all the candidates in one hour is given as:
\[\dfrac{\text{1}}{\text{A}}\text{+}\dfrac{\text{1}}{\text{B}}\text{+}\dfrac{\text{1}}{\text{C}}\]
Now equating the work done by all (\[8\] hours) in one hour we get the work done as \[\dfrac{1}{8}th\] of all the work done.
\[\dfrac{\text{1}}{\text{A}}\text{+}\dfrac{\text{1}}{\text{B}}\text{+}\dfrac{\text{1}}{\text{C}}=\dfrac{1}{8}\]
\[\dfrac{\text{1}}{\text{20}}\text{+}\dfrac{\text{1}}{\text{24}}\text{+}\dfrac{\text{1}}{\text{x}}=\dfrac{1}{8}\]
\[\dfrac{\text{1}}{\text{x}}=\dfrac{1}{8}-\dfrac{\text{1}}{\text{20}}\text{+}\dfrac{\text{1}}{\text{24}}\]
\[\dfrac{\text{1}}{\text{x}}=\dfrac{15-6+5}{120}\]
\[\dfrac{\text{1}}{\text{x}}=\dfrac{4}{120}\]
\[x=30\text{ days}\]
\[\therefore \] C alone will take \[30\text{ days}\] to complete the work.
Note: Students may go wrong while calculating the total work for each individual, the total work is taken as unit \[1\]. Therefore, \[\dfrac{1}{20},\text{ }\dfrac{1}{24}\] and \[\dfrac{1}{x}\] are unit of work done by A, B and C in the time period of one hour. Hence, we need to find the total number of work done by C based on one hour.
Recently Updated Pages
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Trending doubts
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Which one of the following is a leguminous crop A Pulses class 8 social science CBSE
State the differences between manure and fertilize class 8 biology CBSE
Who is known as Tutie Hind A Saint Kabir B Amir Khusro class 8 social science CBSE
Who is the author of Kadambari AKalidas B Panini C class 8 social science CBSE