Answer
Verified
500.1k+ views
Hint – In this question first find out the numbers which are multiple of 3 or 4 from the numbers which are given which are the favorable outcomes, then divide these favorable outcomes to the total given numbers, use this concept to reach the solution of the problem.
Given data
A bag contains 20 balls numbered from 1 to 20.
Therefore total number of balls $ = 20$.
Now we have to find the probability that the ball drawn is marked with a number which is multiple of 3 or 4.
From 1 to 20 multiple of 3 is (3, 6, 9, 12, 15, and 18).
So there are 6 favorable ways.
From 1 to 20 multiple of 4 is (4, 8, 12, 16 and 20).
So there are 5 favorable ways.
Now as we see that 12 is a multiple of both 3 and 4, so it is considered only one time.
Therefore total number of favorable ways $ = 6 + 5 - 1 = 10$
So, the required probability that the ball drawn is marked with a number which is multiple of 3 or 4.
$ = \dfrac{{{\text{Favorable number of outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{{10}}{{20}} = \dfrac{1}{2}$
So, $\dfrac{1}{2}$ is the required probability.
Note – In such types of questions the key concept we have to remember is that always recall the formula of probability which is stated above then first find out the number of favorable ways after that use the probability formula and simplify, we will get the required answer.
Given data
A bag contains 20 balls numbered from 1 to 20.
Therefore total number of balls $ = 20$.
Now we have to find the probability that the ball drawn is marked with a number which is multiple of 3 or 4.
From 1 to 20 multiple of 3 is (3, 6, 9, 12, 15, and 18).
So there are 6 favorable ways.
From 1 to 20 multiple of 4 is (4, 8, 12, 16 and 20).
So there are 5 favorable ways.
Now as we see that 12 is a multiple of both 3 and 4, so it is considered only one time.
Therefore total number of favorable ways $ = 6 + 5 - 1 = 10$
So, the required probability that the ball drawn is marked with a number which is multiple of 3 or 4.
$ = \dfrac{{{\text{Favorable number of outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{{10}}{{20}} = \dfrac{1}{2}$
So, $\dfrac{1}{2}$ is the required probability.
Note – In such types of questions the key concept we have to remember is that always recall the formula of probability which is stated above then first find out the number of favorable ways after that use the probability formula and simplify, we will get the required answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE