A bag contains \[4\] red, \[5\] black and \[6\] white balls. A ball is drawn from the bag at random. Find the probability that the ball drawn is: red or white.
Answer
Verified
400.8k+ views
Hint: The formula that is needed to find the probability is
\[P(R) = \dfrac{{n(R)}}{{n(S)}}\] ,
where \[n(R)\] is no. of favorable outcome and \[n(S)\] is total no. of events in the sample space.
The probability of two disjoint events \[A\] or \[B\] is given by
\[P(AorB) = P(A) + P(B)\]
Complete step by step answer:
It is given that the bag contains \[4\] red, \[5\] black and \[6\] white balls.
Then the sample space is \[S = \{ R,R,R,R,B,B,B,B,B,W,W,W,W,W,W\} \]
Therefore, the total number of balls in the bag is \[4 + 5 + 6 = 15\]
That is, the total no. of event in the sample \[n(S) = 15\]
To find: Probability of getting a red or white ball.
Let \[R\] be the event of getting a red ball, then the probability of getting a red ball is given by
\[P(R) = \dfrac{{n(R)}}{{n(S)}}\] ,
where \[n(R)\] is no. of favorable outcome and \[n(S)\] is total no. of events in the sample space.
From the sample space we get, \[n(R) = 4\]
Therefore, \[P(R) = \dfrac{4}{15}\]
Let \[W\] be the event of getting a white ball, then the probability of getting a white ball is given by
\[P(W) = \dfrac{{n(W)}}{{n(S)}}\] ,
where \[n(W)\] is no. of favorable outcome and \[n(S)\] is total no. of events in the sample space.
Again, from the sample space we get, \[n(W) = 6\]
Therefore, \[P(W) = \dfrac{6}{{15}}\]
Let \[A\] be the event of getting a red or white ball, then the probability of \[A\] is given by
\[P(A) = P(R) + P(W)\]
Therefore, \[P(A) = \dfrac{4}{{15}} + \dfrac{6}{{15}}\]
Simplifying this we will get,
\[ \Rightarrow P(A) = \dfrac{{(4 + 6)}}{{15}}\]
\[ \Rightarrow P(A) = \dfrac{{10}}{{15}}\]
Thus, the probability of getting a red or white ball is \[\dfrac{{10}}{{15}}\]
Note: In this problem both the events are disjoints that is event of getting red ball and event of getting white ball are disjoint event (i.e. There is no intersection between these two events) so we used the formula \[P(AorB) = P(A) + P(B)\] . If the events are not disjoint events, then we have to use the formula \[P(AorB) = P(A) + P(B) - P(AandB)\] where \[P(AandB)\] is intersection between the events \[A\] and \[B\] .
\[P(R) = \dfrac{{n(R)}}{{n(S)}}\] ,
where \[n(R)\] is no. of favorable outcome and \[n(S)\] is total no. of events in the sample space.
The probability of two disjoint events \[A\] or \[B\] is given by
\[P(AorB) = P(A) + P(B)\]
Complete step by step answer:
It is given that the bag contains \[4\] red, \[5\] black and \[6\] white balls.
Then the sample space is \[S = \{ R,R,R,R,B,B,B,B,B,W,W,W,W,W,W\} \]
Therefore, the total number of balls in the bag is \[4 + 5 + 6 = 15\]
That is, the total no. of event in the sample \[n(S) = 15\]
To find: Probability of getting a red or white ball.
Let \[R\] be the event of getting a red ball, then the probability of getting a red ball is given by
\[P(R) = \dfrac{{n(R)}}{{n(S)}}\] ,
where \[n(R)\] is no. of favorable outcome and \[n(S)\] is total no. of events in the sample space.
From the sample space we get, \[n(R) = 4\]
Therefore, \[P(R) = \dfrac{4}{15}\]
Let \[W\] be the event of getting a white ball, then the probability of getting a white ball is given by
\[P(W) = \dfrac{{n(W)}}{{n(S)}}\] ,
where \[n(W)\] is no. of favorable outcome and \[n(S)\] is total no. of events in the sample space.
Again, from the sample space we get, \[n(W) = 6\]
Therefore, \[P(W) = \dfrac{6}{{15}}\]
Let \[A\] be the event of getting a red or white ball, then the probability of \[A\] is given by
\[P(A) = P(R) + P(W)\]
Therefore, \[P(A) = \dfrac{4}{{15}} + \dfrac{6}{{15}}\]
Simplifying this we will get,
\[ \Rightarrow P(A) = \dfrac{{(4 + 6)}}{{15}}\]
\[ \Rightarrow P(A) = \dfrac{{10}}{{15}}\]
Thus, the probability of getting a red or white ball is \[\dfrac{{10}}{{15}}\]
Note: In this problem both the events are disjoints that is event of getting red ball and event of getting white ball are disjoint event (i.e. There is no intersection between these two events) so we used the formula \[P(AorB) = P(A) + P(B)\] . If the events are not disjoint events, then we have to use the formula \[P(AorB) = P(A) + P(B) - P(AandB)\] where \[P(AandB)\] is intersection between the events \[A\] and \[B\] .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE