Answer
Verified
497.1k+ views
Hint: First use the ratio given to assume the number of each coin in a single variable and then use the given total to find the number of coins.
Complete step-by-step answer:
Given, a bag contains 50 paise, 1 rupee and 2-rupee coins in the ratio of 2:3:4 such that the total sum of the value of coins is Rs.240.
Using the ratio given, let us make an assumption of the number of coins.
Let the number of 50 paise coins be $2x$, 1-rupee coins be $3x$ and 2-rupee coins be $4x$.
The total value of the coins is given to be Rs.240.
Also, we know that 1 rupee = 100 paise,
$ \Rightarrow $50 paise = 0.5 rupees
Equating the total value calculated using given ratio to Rs.240, we get
$
240 = 2x \times 0.5 + 3x \times 1 + 4x \times 2 \\
\Rightarrow 240 = 12x \\
\Rightarrow x = 20 \\
$
Using the above obtained value of x, we can determine the count of each individual coin in the bag.
$ \Rightarrow $Total number of 50 paise coins $ = 2x = 40$
$ \Rightarrow $Total number of 1-rupee coins $ = 3x = 60$
$ \Rightarrow $Total number of 2-rupee coins $ = 4x = 80$
Hence total number of coins $ = 60 + 40 + 80 = 180$
Therefore, option (B). 180 is the correct answer.
Note: Problems like above should be solved by using the ratio to form the equation in a single variable. The unit should be kept in mind while using the ratio to calculate quantities as it should be same
Complete step-by-step answer:
Given, a bag contains 50 paise, 1 rupee and 2-rupee coins in the ratio of 2:3:4 such that the total sum of the value of coins is Rs.240.
Using the ratio given, let us make an assumption of the number of coins.
Let the number of 50 paise coins be $2x$, 1-rupee coins be $3x$ and 2-rupee coins be $4x$.
The total value of the coins is given to be Rs.240.
Also, we know that 1 rupee = 100 paise,
$ \Rightarrow $50 paise = 0.5 rupees
Equating the total value calculated using given ratio to Rs.240, we get
$
240 = 2x \times 0.5 + 3x \times 1 + 4x \times 2 \\
\Rightarrow 240 = 12x \\
\Rightarrow x = 20 \\
$
Using the above obtained value of x, we can determine the count of each individual coin in the bag.
$ \Rightarrow $Total number of 50 paise coins $ = 2x = 40$
$ \Rightarrow $Total number of 1-rupee coins $ = 3x = 60$
$ \Rightarrow $Total number of 2-rupee coins $ = 4x = 80$
Hence total number of coins $ = 60 + 40 + 80 = 180$
Therefore, option (B). 180 is the correct answer.
Note: Problems like above should be solved by using the ratio to form the equation in a single variable. The unit should be kept in mind while using the ratio to calculate quantities as it should be same
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE