Answer
Verified
396.6k+ views
Hint: In order to solve this question, we are first going to consider the initial height and the corresponding initial potential energy, then finding the height after the first bounce, and thus, the corresponding potential energy is found. Then, their difference is found and thus fraction of energy lost.
Formula used:
If the mass of the ball is\[m\] and its original height is \[h\], thus, its initial potential energy will be
\[{U_i} = mgh\]
Complete step-by-step solution:
Let the mass of the ball be\[m\] and its original height be\[h\], thus, its initial potential energy will be given by the equation
\[{U_i} = mgh\]
Now, after that one first bounce, the height is going to be\[80\% \,of\,h\], i.e. the original height of the ball.
Thus, the final height is
\[{h_f} = \dfrac{{80}}{{100}} \times h = 0.80h\]
The final potential energy of the ball after each bounce will be
\[{U_f} = 0.80mgh\]
The potential energy lost in each bounce is equal to
\[{U_i} - {U_f} = mgh - 0.80mgh = 0.20mgh\]
Therefore, fraction of the potential energy lost by the ball in each bounce is equal to: \[0.20\]
Note:It is important to note that the energy lost in each bounce is inversely proportional to the height to which the ball reaches after one bounce. The more is the height of the ball after bouncing off, the less is the energy lost by the ball in that one bounce and if the height after bouncing remains almost same, the energy lost is also almost same.
Formula used:
If the mass of the ball is\[m\] and its original height is \[h\], thus, its initial potential energy will be
\[{U_i} = mgh\]
Complete step-by-step solution:
Let the mass of the ball be\[m\] and its original height be\[h\], thus, its initial potential energy will be given by the equation
\[{U_i} = mgh\]
Now, after that one first bounce, the height is going to be\[80\% \,of\,h\], i.e. the original height of the ball.
Thus, the final height is
\[{h_f} = \dfrac{{80}}{{100}} \times h = 0.80h\]
The final potential energy of the ball after each bounce will be
\[{U_f} = 0.80mgh\]
The potential energy lost in each bounce is equal to
\[{U_i} - {U_f} = mgh - 0.80mgh = 0.20mgh\]
Therefore, fraction of the potential energy lost by the ball in each bounce is equal to: \[0.20\]
Note:It is important to note that the energy lost in each bounce is inversely proportional to the height to which the ball reaches after one bounce. The more is the height of the ball after bouncing off, the less is the energy lost by the ball in that one bounce and if the height after bouncing remains almost same, the energy lost is also almost same.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE