Answer
Verified
452.1k+ views
Hint:
In this question first we will find the volume of the right circular cylinder and volume of its hemispherical ends and then we will find the volume of the cylinder and its hemispherical ends when length and radius is changed. And finally we will find the percentage change in the volume of the right circular cylinder.
Formula used:
The volume of the cylinder is given by $\pi {r^2}h$ and the volume of hemisphere is given by $\dfrac{2}{3}\pi {r^3}$ .
Complete step by step solution:
The radius of the cylinder is given $1.5\,m$ and its length is $4\,m$ .
The formula for volume of cylinder is given by $\pi {r^2}h$
Put the value of radius and length in the above formula.
$ \Rightarrow \pi {\left( {1.5} \right)^2}\left( 4 \right) = 9\pi \,{m^3}$
The formula for volume of hemisphere is $\dfrac{2}{3}\pi {r^3}$.
$ \Rightarrow \dfrac{2}{3}\pi {\left( {1.5} \right)^3} = 2.25\pi \,{m^3}$
Therefore, the total volume is $ = 9\pi \,{m^3} + 2.25\pi \,{m^3} = 11.25\pi \,{m^3}$ .
Now, radius becomes $r = 1.5\,m + 0.01\,m = 1.51\,m$ and the length becomes $h = 4\,m + 0.05\,m = 4.05\,m$ . Volume of the cylinder after the increase in radius and length is:
$ \Rightarrow \pi {\left( {1.51} \right)^2}\left( {4.05} \right) = 9.234405\pi \,{m^3}$
Now, the volume of the hemisphere becomes
$ \Rightarrow \dfrac{2}{3}\pi {\left( {1.51} \right)^3} = 2.2953\pi \,{m^3}$
Therefore, the total volume is $ = 9.234405\pi \,{m^3} + 2.2953\pi \,{m^3} = 11.529705\pi \,{m^3}$ .
Now, change in percentage is :
$ \Rightarrow \dfrac{{\left( {11.529705\pi - 11.25\pi } \right)}}{{11.25\pi }} \times 100 = 2.48\% $
Therefore, the change in percentage is $2.48\% $
Hence, the correct option is (B).
Note:
The percentage change in volume is calculated on the original volume of the balloon and it is not calculated on the volume of the balloon after the change in radius and length. The important thing in this question is that we have to find the total volume of the balloon and it depends on the shape of the balloon i.e. in our case the balloon is cylindrical and hemispherical both. So we have to find the volume of cylinder and hemisphere to calculate the total volume of the balloon.
In this question first we will find the volume of the right circular cylinder and volume of its hemispherical ends and then we will find the volume of the cylinder and its hemispherical ends when length and radius is changed. And finally we will find the percentage change in the volume of the right circular cylinder.
Formula used:
The volume of the cylinder is given by $\pi {r^2}h$ and the volume of hemisphere is given by $\dfrac{2}{3}\pi {r^3}$ .
Complete step by step solution:
The radius of the cylinder is given $1.5\,m$ and its length is $4\,m$ .
The formula for volume of cylinder is given by $\pi {r^2}h$
Put the value of radius and length in the above formula.
$ \Rightarrow \pi {\left( {1.5} \right)^2}\left( 4 \right) = 9\pi \,{m^3}$
The formula for volume of hemisphere is $\dfrac{2}{3}\pi {r^3}$.
$ \Rightarrow \dfrac{2}{3}\pi {\left( {1.5} \right)^3} = 2.25\pi \,{m^3}$
Therefore, the total volume is $ = 9\pi \,{m^3} + 2.25\pi \,{m^3} = 11.25\pi \,{m^3}$ .
Now, radius becomes $r = 1.5\,m + 0.01\,m = 1.51\,m$ and the length becomes $h = 4\,m + 0.05\,m = 4.05\,m$ . Volume of the cylinder after the increase in radius and length is:
$ \Rightarrow \pi {\left( {1.51} \right)^2}\left( {4.05} \right) = 9.234405\pi \,{m^3}$
Now, the volume of the hemisphere becomes
$ \Rightarrow \dfrac{2}{3}\pi {\left( {1.51} \right)^3} = 2.2953\pi \,{m^3}$
Therefore, the total volume is $ = 9.234405\pi \,{m^3} + 2.2953\pi \,{m^3} = 11.529705\pi \,{m^3}$ .
Now, change in percentage is :
$ \Rightarrow \dfrac{{\left( {11.529705\pi - 11.25\pi } \right)}}{{11.25\pi }} \times 100 = 2.48\% $
Therefore, the change in percentage is $2.48\% $
Hence, the correct option is (B).
Note:
The percentage change in volume is calculated on the original volume of the balloon and it is not calculated on the volume of the balloon after the change in radius and length. The important thing in this question is that we have to find the total volume of the balloon and it depends on the shape of the balloon i.e. in our case the balloon is cylindrical and hemispherical both. So we have to find the volume of cylinder and hemisphere to calculate the total volume of the balloon.
Recently Updated Pages
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Chahalgani means ATurkish noble under Iltutmish BSlaves class 10 social science CBSE