Answer
Verified
431.7k+ views
Hint: To solve this problem, use the formula for internal resistance. Substitute the values in the formula of internal resistance for $5 \Omega$ resistor and calculate the internal resistance for it. Then, use the same formula to find the internal resistance for $4 \Omega$ resistor. Substitute the internal resistance obtained above in this equation and find the unknown variable which is the new position of the balance point.
Formula used:
$r= \dfrac {{l}_{1}-{l}_{2}}{{l}_{2}}R$
Complete answer:
Given: ${l}_{1}= 84 cm$
${l}_{2}= 70 cm$
${R}_{1}= 5 \Omega$
${R}_{2}= 4 \Omega$
The formula for internal resistance is given by,
$r= \dfrac {{l}_{1}-{l}_{2}}{{l}_{2}}R$
Internal resistance when $5 \Omega$ resistor is connected is given by,
$r= \dfrac {{l}_{1}-{l}_{2}}{{l}_{2}}{R}_{1}$
Substituting values in above equation we get,
$r= \dfrac {84-70}{70}\times 5$
$\Rightarrow r= \dfrac {14}{70}\times 5$
$\Rightarrow r= 1 \Omega$
Internal resistance when $4 \Omega$ resistor is connected is given by,
$r= \dfrac {{l}_{1}-{l}_{3}}{{l}_{3}}{R}_{2}$
Substituting values in above equation we get,
$1= \dfrac {84-{l}_{3}}{{l}_{3}} \times 4$
$\Rightarrow {l}_{3}=(84-{l}_{3}) \times 4$
$\Rightarrow {l}_{3}= 336 – 4{l}_{3}$
$\Rightarrow 5{l}_{3}= 336$
$\Rightarrow {l}_{3}= \dfrac {336}{5}$
$\Rightarrow {l}_{3}= 67.2 cm$
Hence, when $5 \Omega$ resistor is changed by $4 \Omega$ resistor, the new position of the balance point is 67.2 cm.
So, the correct answer is option C i.e. 67.2 cm.
Note:
Internal resistance is the opposition offered by the cells and batteries to the flow of current flowing in the generation of heat. Internal resistance depends upon the nature of the material of the wire. The potentiometer is an arrangement that can be used to find the unknown value of resistances and the cell’s internal resistance. Potentiometer is also used to determine the unknown values of potential differences.
Formula used:
$r= \dfrac {{l}_{1}-{l}_{2}}{{l}_{2}}R$
Complete answer:
Given: ${l}_{1}= 84 cm$
${l}_{2}= 70 cm$
${R}_{1}= 5 \Omega$
${R}_{2}= 4 \Omega$
The formula for internal resistance is given by,
$r= \dfrac {{l}_{1}-{l}_{2}}{{l}_{2}}R$
Internal resistance when $5 \Omega$ resistor is connected is given by,
$r= \dfrac {{l}_{1}-{l}_{2}}{{l}_{2}}{R}_{1}$
Substituting values in above equation we get,
$r= \dfrac {84-70}{70}\times 5$
$\Rightarrow r= \dfrac {14}{70}\times 5$
$\Rightarrow r= 1 \Omega$
Internal resistance when $4 \Omega$ resistor is connected is given by,
$r= \dfrac {{l}_{1}-{l}_{3}}{{l}_{3}}{R}_{2}$
Substituting values in above equation we get,
$1= \dfrac {84-{l}_{3}}{{l}_{3}} \times 4$
$\Rightarrow {l}_{3}=(84-{l}_{3}) \times 4$
$\Rightarrow {l}_{3}= 336 – 4{l}_{3}$
$\Rightarrow 5{l}_{3}= 336$
$\Rightarrow {l}_{3}= \dfrac {336}{5}$
$\Rightarrow {l}_{3}= 67.2 cm$
Hence, when $5 \Omega$ resistor is changed by $4 \Omega$ resistor, the new position of the balance point is 67.2 cm.
So, the correct answer is option C i.e. 67.2 cm.
Note:
Internal resistance is the opposition offered by the cells and batteries to the flow of current flowing in the generation of heat. Internal resistance depends upon the nature of the material of the wire. The potentiometer is an arrangement that can be used to find the unknown value of resistances and the cell’s internal resistance. Potentiometer is also used to determine the unknown values of potential differences.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE