Answer
Verified
429.9k+ views
Hint:We can use the Wien displacement law to find the wavelength at maximum energy ${\lambda _m}T = cons\tan t$. Where ${\lambda _m}$is the wavelength of maximum energy and T be the temperature. Blackbody is the surface that absorbs all the radiation falling on it that’s why it has the maximum energy.
Complete step by step answer:
Applying Wien displacement law: $\lambda T = $constant
$\lambda $ is the wavelength of maximum energy
$T$ is the absolute temperature
Using the given values from the question for black body
${\lambda _{m1}}{T_1} = {\lambda _{m2}}T{}_2$
Where we had taken ${\lambda _{m1 = }}14\mu m$, ${T_1} = 200K$, ${T_2} = 1000K$. ${\lambda _{m2}} = $?
Substituting the values
$14 \times 200 = {\lambda _{m2}} \times 1000$
$\Rightarrow{\lambda _{m2}} = \dfrac{{14 \times 200}}{{1000}}$
$\therefore{\lambda _{m2}} = 2.8\mu m$
Hence, the correct answer is C.
Additional information:
Wein displacement was named after the scientist Wilhelm Wien in the year $1893$ which states that black body radiation curve for different wavelengths will peak at different wavelengths that are inversely proportional to temperature. ${\lambda _m} = \dfrac{b}{T}$
Where ${\lambda _m}$ is the wavelength at maximum energy, $T$ is the absolute temperature and $b$ is the constant of proportionality called Wien’s displacement constant having value $2.89771 \ldots \times {10^{ - 3}}mK$
Note:Absolute temperature is the temperature of an object taken on a scale where $0$ is taken as absolute zero. Absolute zero is $0K$ or $ - 273.15^\circ C$ .All objects having absolute zero temperature emit electromagnetic radiation.
Complete step by step answer:
Applying Wien displacement law: $\lambda T = $constant
$\lambda $ is the wavelength of maximum energy
$T$ is the absolute temperature
Using the given values from the question for black body
${\lambda _{m1}}{T_1} = {\lambda _{m2}}T{}_2$
Where we had taken ${\lambda _{m1 = }}14\mu m$, ${T_1} = 200K$, ${T_2} = 1000K$. ${\lambda _{m2}} = $?
Substituting the values
$14 \times 200 = {\lambda _{m2}} \times 1000$
$\Rightarrow{\lambda _{m2}} = \dfrac{{14 \times 200}}{{1000}}$
$\therefore{\lambda _{m2}} = 2.8\mu m$
Hence, the correct answer is C.
Additional information:
Wein displacement was named after the scientist Wilhelm Wien in the year $1893$ which states that black body radiation curve for different wavelengths will peak at different wavelengths that are inversely proportional to temperature. ${\lambda _m} = \dfrac{b}{T}$
Where ${\lambda _m}$ is the wavelength at maximum energy, $T$ is the absolute temperature and $b$ is the constant of proportionality called Wien’s displacement constant having value $2.89771 \ldots \times {10^{ - 3}}mK$
Note:Absolute temperature is the temperature of an object taken on a scale where $0$ is taken as absolute zero. Absolute zero is $0K$ or $ - 273.15^\circ C$ .All objects having absolute zero temperature emit electromagnetic radiation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE