A boat covers 6 km in an hour in still water. It takes thrice as much time in covering the same distance against the current. What is the speed of the current?
$
(a){\text{ 2km/hr}} \\
(b){\text{ 3km/hr}} \\
(c){\text{ 4km/hr}} \\
(d){\text{ 5km/hr}} \\
$
Answer
Verified
502.2k+ views
Hint – In this question let the speed of the boat in still water be x km/hr and speed of boat in current be ykm/hr. Derive relations between these variables by considering the concept of upstream and downstream. Solve the questions to get the answer.
Complete step-by-step solution -
Let the speed of the boat in still water be x km/hr.
And the speed of the current be y km/hr.
So the downstream (D.S) speed = speed of boat + speed of current.
And the upstream (U.S) speed = speed of boat – speed of current.
$ \Rightarrow D.S = x + y$ Km/hr....................... (1)
And
$ \Rightarrow U.S = x - y$ Km/hr......................... (2)
Now as we know the relation of speed, distance and time which is
${\text{Speed = }}\dfrac{{{\text{distance}}}}{{{\text{time}}}}$
Let us consider that the distance which covered by the boat be (z) km and let the time taken to cover the distance with the current be (t1) hours and against the current be (t2) hours.
$ \Rightarrow D.S = \dfrac{z}{{{t_1}}}$ Km/hr.
And the upstream speed is 4 km in 2 hours.
$ \Rightarrow U.S = \dfrac{z}{{{t_2}}}$ Km/hr.
$ \Rightarrow D.S\left( {{t_1}} \right) = U.P\left( {{t_2}} \right)$..................... (3)
Now it is given that the boat takes thrice as much time in covering the same distance against the current.
$ \Rightarrow {t_2} = 3{t_1}$
So from equation (3) we have,
$ \Rightarrow D.S\left( {{t_1}} \right) = U.P\left( {3{t_1}} \right)$
$ \Rightarrow D.S = 3\left( {U.S} \right)$
Now from equation (1) and (2) we have,
$ \Rightarrow x + y = 3\left( {x - y} \right)$
Now simplify the above equation we have,
$ \Rightarrow 3x - x = y + 3y$
$ \Rightarrow 4y = 2x$
Now divide by 4 we have,
$ \Rightarrow y = \dfrac{{2x}}{4} = \dfrac{x}{2}$ Km/hr.......................... (4)
Now it is given that a boat covers 6 km in an hour in still water.
So the speed of the boat in still water, x = 6 km/hr.
Now from equation (4) we have,
$ \Rightarrow y = \dfrac{x}{2} = \dfrac{6}{2} = 3$ Km/hr.
So this is the required answer.
Hence option (B) is correct.
Note – In this question the trick part was about the understanding of upstream and downstream, upstream is the direction towards the fluid source or this means that we are going in the opposite direction to the flow as the flow will be directed away from the source. Downstream means towards the direction in which fluid is going or away from the source. That’s why the speed of the boat is added with the speed of current in downstream and subtracted in case of upstream.
.
Complete step-by-step solution -
Let the speed of the boat in still water be x km/hr.
And the speed of the current be y km/hr.
So the downstream (D.S) speed = speed of boat + speed of current.
And the upstream (U.S) speed = speed of boat – speed of current.
$ \Rightarrow D.S = x + y$ Km/hr....................... (1)
And
$ \Rightarrow U.S = x - y$ Km/hr......................... (2)
Now as we know the relation of speed, distance and time which is
${\text{Speed = }}\dfrac{{{\text{distance}}}}{{{\text{time}}}}$
Let us consider that the distance which covered by the boat be (z) km and let the time taken to cover the distance with the current be (t1) hours and against the current be (t2) hours.
$ \Rightarrow D.S = \dfrac{z}{{{t_1}}}$ Km/hr.
And the upstream speed is 4 km in 2 hours.
$ \Rightarrow U.S = \dfrac{z}{{{t_2}}}$ Km/hr.
$ \Rightarrow D.S\left( {{t_1}} \right) = U.P\left( {{t_2}} \right)$..................... (3)
Now it is given that the boat takes thrice as much time in covering the same distance against the current.
$ \Rightarrow {t_2} = 3{t_1}$
So from equation (3) we have,
$ \Rightarrow D.S\left( {{t_1}} \right) = U.P\left( {3{t_1}} \right)$
$ \Rightarrow D.S = 3\left( {U.S} \right)$
Now from equation (1) and (2) we have,
$ \Rightarrow x + y = 3\left( {x - y} \right)$
Now simplify the above equation we have,
$ \Rightarrow 3x - x = y + 3y$
$ \Rightarrow 4y = 2x$
Now divide by 4 we have,
$ \Rightarrow y = \dfrac{{2x}}{4} = \dfrac{x}{2}$ Km/hr.......................... (4)
Now it is given that a boat covers 6 km in an hour in still water.
So the speed of the boat in still water, x = 6 km/hr.
Now from equation (4) we have,
$ \Rightarrow y = \dfrac{x}{2} = \dfrac{6}{2} = 3$ Km/hr.
So this is the required answer.
Hence option (B) is correct.
Note – In this question the trick part was about the understanding of upstream and downstream, upstream is the direction towards the fluid source or this means that we are going in the opposite direction to the flow as the flow will be directed away from the source. Downstream means towards the direction in which fluid is going or away from the source. That’s why the speed of the boat is added with the speed of current in downstream and subtracted in case of upstream.
.
Recently Updated Pages
If the perimeter of the equilateral triangle is 18-class-10-maths-CBSE
How do you make the plural form of most of the words class 10 english CBSE
Quotes and Slogans on Consumer Rights Can Anybody Give Me
What is the orbit of a satellite Find out the basis class 10 physics CBSE
the period from 1919 to 1947 forms an important phase class 10 social science CBSE
If the average marks of three batches of 55 60 and class 10 maths CBSE
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The term disaster is derived from language AGreek BArabic class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Differentiate between natural and artificial ecosy class 10 biology CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE