Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

A boat goes 30 km upstream and 44 km downstream in 13 hours it can go 14 km upstream and 55 km downstream. Determine the speed of the stream and that of the boat in still water.

Answer
VerifiedVerified
495.3k+ views
like imagedislike image
Hint: Start by considering the speed of boat and stream as some variable , remember for upstream the net speed is the difference between boat and stream whereas in downstream it is the sum . Use the speed – time relation to find the time taken in different cases given , using the same solve for the speed of boat and stream.

Complete step-by-step answer:
Let the speed of the boat in still water vbe be km/h and speed of stream be vrkm/h
Case 1:-
Boat takes 10 hours to cover 30 km upstream and 44 km downstream
Time taken by boat to cover upstream distance= tu=upstream distance cover by boatspeed in upstream
tu=30vbevr
Time taken by boat to cover downstream distance) = td=downstream distance cover by boatspeed in downstream
td=44vbe+vr
So, The Total time taken = tu+td=10
30vbevr+44vbe+vr=10eqn.1
Similarly,
Case 2:-
Boat takes 13 hours to cover 40 km upstream and 55 km downstream, using the same formula as in the above case , we get
tu=40vbevr and td=55vbe+vr
So, The Total time taken, tu+td=13
40vbevr+55vbe+vr=13eqn.2
Now , We have to solve equations 1 and 2
So , For easy calculation let x=1vbevr and y=1vbe+vr
Now convert (1) and (2) equation in x and y
30x + 44y = 10 and 40x + 55y =13
Solving for x and y ,we get
x=15 and y=111
Which means ,vbevr=5 and vbe+vr=11
After solving them , we get
vbe=8 and vr=3
Therefore, The Speed of boat in still water = 8km/h and the speed of stream = 3km/h

Note: Similar questions can be asked involving two boats starting simultaneously , one moving downstream and the other upstream, And can ask to locate the point where they meet or cross each other. In that case take the distance of the meeting point be x from one end y from the other , convert all the equations and relation in speed – time relation. Remember that upstream speed is always less than downstream speed.