Answer
Verified
396.1k+ views
Hint- This question can be solved by knowing the fact that when a boat goes upstream we subtract the speed of boat and speed of stream and when the boat goes downstream we add the speed of boat and stream.
Now it is given that a boat goes \[30km\] upstream and $44km$ downstream in $10$ hours and in $13$ hours it can go $40km$ upstream and $55km$ downstream.
And we have to find the speed of the stream and speed of the boat in still water.
Let the speed of the boat in still water be $ukm{\text{ per }}hour$ and the speed of stream be $vkm{\text{ per }}hour$.
Now,
Speed of upstream=$\left( {u - v} \right)km{\text{ per }}hour$
Speed of downstream$ = \left( {u + v} \right)km{\text{ per }}hour$
Let $\dfrac{1}{{\left( {u - v} \right)}} = x$ and $\dfrac{1}{{\left( {u + v} \right)}} = y$
Now it is given that a boat goes \[30km\] upstream and $44km$ downstream in $10$ hours.
Or $
\dfrac{{30}}{{u - v}} + \dfrac{{44}}{{u + v}} = 10 \\
\Rightarrow 30x + 44y = 10 - - - - - - - \left( i \right) \\
$
Now multiply $\left( i \right)$ by $4$ we get,
$120x + 176y = 40 - - - - - - \left( {ii} \right)$
Also,
In $13$ hours it can go $40km$ upstream and $55km$ downstream.
$ \Rightarrow \dfrac{{40}}{{u - y}} + \dfrac{{55}}{{u + v}} = 13$
Or $40x + 55y = 13 - - - - - - \left( {iii} \right)$
Now multiply the above equation by 3 we get,
$120x + 165y = 39 - - - - - \left( {iv} \right)$
Subtract $\left( {iv} \right)$ from $\left( {ii} \right)$ we get,
$11y = 1$
Or $y = \dfrac{1}{{11}}$
Now putting the value of $y$ in $\left( i \right)$
$30x + 44 \times \dfrac{1}{{11}} = 10$
Or $30x + 4 = 10$
$
\Rightarrow 30x = 6 \\
\therefore x = \dfrac{1}{5} \\
$
Now we know that $\dfrac{1}{{\left( {u - v} \right)}} = x$ and $\dfrac{1}{{\left( {u + v} \right)}} = y$
Or $u - v = 5$ and $u + v = 11$
Adding the above equation we get the value of u i.e.
$2u = 16$
Or $u = 8km{\text{ per }}hour$
Now put the value of $u$ in any of the above equation,
$8 - 5 = v$
Or $v = 3km{\text{ per }}hour$
Therefore,
Speed of boat in still water$ = 8km{\text{ per }}hour$
Speed of stream$ = 3km{\text{ per }}hour$
Hence, the correct option is $\left( A \right)$ .
Note- Whenever we face such types of questions the key concept is that we should write what is given to us and then convert the statements into equations and then solve them by doing basic mathematics. Like we did in this question.
Now it is given that a boat goes \[30km\] upstream and $44km$ downstream in $10$ hours and in $13$ hours it can go $40km$ upstream and $55km$ downstream.
And we have to find the speed of the stream and speed of the boat in still water.
Let the speed of the boat in still water be $ukm{\text{ per }}hour$ and the speed of stream be $vkm{\text{ per }}hour$.
Now,
Speed of upstream=$\left( {u - v} \right)km{\text{ per }}hour$
Speed of downstream$ = \left( {u + v} \right)km{\text{ per }}hour$
Let $\dfrac{1}{{\left( {u - v} \right)}} = x$ and $\dfrac{1}{{\left( {u + v} \right)}} = y$
Now it is given that a boat goes \[30km\] upstream and $44km$ downstream in $10$ hours.
Or $
\dfrac{{30}}{{u - v}} + \dfrac{{44}}{{u + v}} = 10 \\
\Rightarrow 30x + 44y = 10 - - - - - - - \left( i \right) \\
$
Now multiply $\left( i \right)$ by $4$ we get,
$120x + 176y = 40 - - - - - - \left( {ii} \right)$
Also,
In $13$ hours it can go $40km$ upstream and $55km$ downstream.
$ \Rightarrow \dfrac{{40}}{{u - y}} + \dfrac{{55}}{{u + v}} = 13$
Or $40x + 55y = 13 - - - - - - \left( {iii} \right)$
Now multiply the above equation by 3 we get,
$120x + 165y = 39 - - - - - \left( {iv} \right)$
Subtract $\left( {iv} \right)$ from $\left( {ii} \right)$ we get,
$11y = 1$
Or $y = \dfrac{1}{{11}}$
Now putting the value of $y$ in $\left( i \right)$
$30x + 44 \times \dfrac{1}{{11}} = 10$
Or $30x + 4 = 10$
$
\Rightarrow 30x = 6 \\
\therefore x = \dfrac{1}{5} \\
$
Now we know that $\dfrac{1}{{\left( {u - v} \right)}} = x$ and $\dfrac{1}{{\left( {u + v} \right)}} = y$
Or $u - v = 5$ and $u + v = 11$
Adding the above equation we get the value of u i.e.
$2u = 16$
Or $u = 8km{\text{ per }}hour$
Now put the value of $u$ in any of the above equation,
$8 - 5 = v$
Or $v = 3km{\text{ per }}hour$
Therefore,
Speed of boat in still water$ = 8km{\text{ per }}hour$
Speed of stream$ = 3km{\text{ per }}hour$
Hence, the correct option is $\left( A \right)$ .
Note- Whenever we face such types of questions the key concept is that we should write what is given to us and then convert the statements into equations and then solve them by doing basic mathematics. Like we did in this question.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE