Answer
Verified
447.9k+ views
Hint: Here, we need to find the width of the river. We will use the formula for the trigonometric ratio, sine of an angle, in a right angled triangle to form an equation. We will solve the equation to find the width of the river.
Formula Used:
The sine of an angle \[\theta \] in a right angled triangle is given by \[\sin \theta = \dfrac{{{\rm{Perpendicular}}}}{{{\rm{Hypotenuse}}}}\].
Complete step-by-step answer:
First, we will draw the diagram using the information given in the question.
Here, AB and CD are the two banks of the river. The boat starts from the point R on the bank AB, making an angle of \[60^\circ \]. RQ is the distance travelled by the boat, that is 600 m.
We need to find the width of the river, that is PQ.
We will use the formula for sine of an angle of a right angled triangle to find the width of the river.
We know that the sine of an angle \[\theta \] in a right angled triangle is given by \[\sin \theta = \dfrac{{{\rm{Perpendicular}}}}{{{\rm{Hypotenuse}}}}\].
In the triangle PQR, PQ is the perpendicular and QR is the hypotenuse.
Therefore, in triangle PQR, we have
\[ \Rightarrow \sin \angle PRQ = \dfrac{{PQ}}{{QR}}\]
Substituting \[\angle PRQ = 60^\circ \] and \[QR = 600\] m in the equation, we get
\[ \Rightarrow \sin 60^\circ = \dfrac{{PQ}}{{600}}\]
The sine of the angle measuring \[60^\circ \] is equal to \[\dfrac{{\sqrt 3 }}{2}\].
Substituting \[\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}\] in the expression, we get
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{PQ}}{{600}}\]
Multiplying both sides by 600, we get
\[ \Rightarrow \dfrac{{600\sqrt 3 }}{2} = PQ\]
Thus, we get
\[ \Rightarrow PQ = 300\sqrt 3 \]
Therefore, the width of the river is \[300\sqrt 3 \] m.
We can find the approximate value of the width of the river by substituting \[\sqrt 3 = 1.732\].
Substituting \[\sqrt 3 = 1.732\] in the equation \[PQ = 300\sqrt 3 \], we get
\[ \Rightarrow PQ = 300 \times 1.732\]
Multiplying the terms, we get
\[ \Rightarrow PQ = 519.6\] m
Therefore, the width of the river is approximately \[519.6\] m.
Note: We used sine to solve the problem instead of tangent or cosine, because sine is the ratio of the perpendicular and the hypotenuse. The hypotenuse is the distance travelled by the boat, which is given. The perpendicular is the required width of the river. Therefore, using the sine helps to solve the problem much easily and in lesser steps than by using tangent or cosine.
Formula Used:
The sine of an angle \[\theta \] in a right angled triangle is given by \[\sin \theta = \dfrac{{{\rm{Perpendicular}}}}{{{\rm{Hypotenuse}}}}\].
Complete step-by-step answer:
First, we will draw the diagram using the information given in the question.
Here, AB and CD are the two banks of the river. The boat starts from the point R on the bank AB, making an angle of \[60^\circ \]. RQ is the distance travelled by the boat, that is 600 m.
We need to find the width of the river, that is PQ.
We will use the formula for sine of an angle of a right angled triangle to find the width of the river.
We know that the sine of an angle \[\theta \] in a right angled triangle is given by \[\sin \theta = \dfrac{{{\rm{Perpendicular}}}}{{{\rm{Hypotenuse}}}}\].
In the triangle PQR, PQ is the perpendicular and QR is the hypotenuse.
Therefore, in triangle PQR, we have
\[ \Rightarrow \sin \angle PRQ = \dfrac{{PQ}}{{QR}}\]
Substituting \[\angle PRQ = 60^\circ \] and \[QR = 600\] m in the equation, we get
\[ \Rightarrow \sin 60^\circ = \dfrac{{PQ}}{{600}}\]
The sine of the angle measuring \[60^\circ \] is equal to \[\dfrac{{\sqrt 3 }}{2}\].
Substituting \[\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}\] in the expression, we get
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{PQ}}{{600}}\]
Multiplying both sides by 600, we get
\[ \Rightarrow \dfrac{{600\sqrt 3 }}{2} = PQ\]
Thus, we get
\[ \Rightarrow PQ = 300\sqrt 3 \]
Therefore, the width of the river is \[300\sqrt 3 \] m.
We can find the approximate value of the width of the river by substituting \[\sqrt 3 = 1.732\].
Substituting \[\sqrt 3 = 1.732\] in the equation \[PQ = 300\sqrt 3 \], we get
\[ \Rightarrow PQ = 300 \times 1.732\]
Multiplying the terms, we get
\[ \Rightarrow PQ = 519.6\] m
Therefore, the width of the river is approximately \[519.6\] m.
Note: We used sine to solve the problem instead of tangent or cosine, because sine is the ratio of the perpendicular and the hypotenuse. The hypotenuse is the distance travelled by the boat, which is given. The perpendicular is the required width of the river. Therefore, using the sine helps to solve the problem much easily and in lesser steps than by using tangent or cosine.
Recently Updated Pages
How do you write x 3y 18 in slope intercept form class 10 maths CBSE
How do you write x 3y 18 in slope intercept form class 10 maths CBSE
How do you write the standard form of the equation class 10 maths CBSE
How do you write the standard form of the equation class 10 maths CBSE
How do you write the phrase as an algebraic expression class 10 maths CBSE
How do you write the phrase as an algebraic expression class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Chahalgani means ATurkish noble under Iltutmish BSlaves class 10 social science CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
the Gond raja of Garha Katanga assumed the title of class 10 social science CBSE