Answer
Verified
450k+ views
Hint:Determine the speed of the boat required to complete one round trip in minimum time which is perpendicular to the river flow. Use the formula for speed of an object to determine the time required for the boat to reach the other edge of the river. Multiply this time by 2 to determine the minimum time for one round trip of the boat.
Formula used:
The speed \[v\] of an object is given by
\[v = \dfrac{d}{t}\] …… (1)
Here, \[d\] is distance travelled by the object and \[t\] is the time required to travel the same distance.
Complete step by step answer:
We have given that the speed of the boat relative to water is \[5\,{\text{km/h}}\].
\[{v_{BW}} = 5\,{\text{km/h}}\]
The speed of the water flowing in the river is \[3\,{\text{km/h}}\].
\[{v_w} = 3\,{\text{km/h}}\]
The width of the river is \[1\,{\text{km}}\].
\[W = 1\,{\text{km}}\]
We have asked to determine the minimum time required for one round trip of the boat.The time required for the boat to complete one round trip will be minimum if it is travelled in a direction perpendicular to the flow of water in the river. Let us draw the diagram for the velocities of the boat and water.
In the above diagram, \[{v_B}\] is the speed of the boat. Let us determine the speed of the boat in the perpendicular direction to the flow of water in the river.
\[v_w^2 + v_B^2 = v_{Bw}^2\]
Substitute \[3\,{\text{km/h}}\] for \[{v_w}\] and \[5\,{\text{km/h}}\] for \[{v_{Bw}}\] in the above equation.
\[{\left( {3\,{\text{km/h}}} \right)^2} + v_B^2 = {\left( {5\,{\text{km/h}}} \right)^2}\]
\[ \Rightarrow v_B^2 = 25 - 9\]
\[ \Rightarrow v_B^2 = 16\]
\[ \Rightarrow {v_B} = 4\,{\text{km/h}}\]
Hence, the speed of the boat in perpendicular direction is \[4\,{\text{km/h}}\].
Now let us determine the time required for the boat to reach the other edge of the river.
Rewrite equation (1) for the speed of the boat.
\[{v_B} = \dfrac{W}{t}\]
\[ \Rightarrow t = \dfrac{W}{{{v_B}}}\]
Substitute \[1\,{\text{km}}\] for \[W\] and \[4\,{\text{km/h}}\] for \[{v_B}\] in the above equation.
\[ \Rightarrow t = \dfrac{{1\,{\text{km}}}}{{4\,{\text{km/h}}}}\]
\[ \Rightarrow t = 0.25\,{\text{h}}\]
The time \[T\] required for one round trip is twice the time \[t\] required for the boat to reach the other edge of the river.
\[T = 2t\]
Substitute \[0.25\,{\text{h}}\] for \[t\] in the above equation.
\[T = 2\left( {0.25\,{\text{h}}} \right)\]
\[ \Rightarrow T = 0.5\,{\text{h}}\]
\[ \Rightarrow T = \left( {0.5\,{\text{h}}} \right)\left( {\dfrac{{60\,{\text{min}}}}{{1\,{\text{h}}}}} \right)\]
\[ \therefore T = 30\,{\text{min}}\]
Therefore, the time required for the boat for one round trip is \[30\,{\text{min}}\].
Hence, the correct option is D.
Note: The students should not forget to determine the speed of boat perpendicular to flow of the river because the given speed of the boat relative to water will not give the minimum time required for the boat to complete one round trip in the river. Also, the students should not forget to multiply the determined time by 2.
Formula used:
The speed \[v\] of an object is given by
\[v = \dfrac{d}{t}\] …… (1)
Here, \[d\] is distance travelled by the object and \[t\] is the time required to travel the same distance.
Complete step by step answer:
We have given that the speed of the boat relative to water is \[5\,{\text{km/h}}\].
\[{v_{BW}} = 5\,{\text{km/h}}\]
The speed of the water flowing in the river is \[3\,{\text{km/h}}\].
\[{v_w} = 3\,{\text{km/h}}\]
The width of the river is \[1\,{\text{km}}\].
\[W = 1\,{\text{km}}\]
We have asked to determine the minimum time required for one round trip of the boat.The time required for the boat to complete one round trip will be minimum if it is travelled in a direction perpendicular to the flow of water in the river. Let us draw the diagram for the velocities of the boat and water.
In the above diagram, \[{v_B}\] is the speed of the boat. Let us determine the speed of the boat in the perpendicular direction to the flow of water in the river.
\[v_w^2 + v_B^2 = v_{Bw}^2\]
Substitute \[3\,{\text{km/h}}\] for \[{v_w}\] and \[5\,{\text{km/h}}\] for \[{v_{Bw}}\] in the above equation.
\[{\left( {3\,{\text{km/h}}} \right)^2} + v_B^2 = {\left( {5\,{\text{km/h}}} \right)^2}\]
\[ \Rightarrow v_B^2 = 25 - 9\]
\[ \Rightarrow v_B^2 = 16\]
\[ \Rightarrow {v_B} = 4\,{\text{km/h}}\]
Hence, the speed of the boat in perpendicular direction is \[4\,{\text{km/h}}\].
Now let us determine the time required for the boat to reach the other edge of the river.
Rewrite equation (1) for the speed of the boat.
\[{v_B} = \dfrac{W}{t}\]
\[ \Rightarrow t = \dfrac{W}{{{v_B}}}\]
Substitute \[1\,{\text{km}}\] for \[W\] and \[4\,{\text{km/h}}\] for \[{v_B}\] in the above equation.
\[ \Rightarrow t = \dfrac{{1\,{\text{km}}}}{{4\,{\text{km/h}}}}\]
\[ \Rightarrow t = 0.25\,{\text{h}}\]
The time \[T\] required for one round trip is twice the time \[t\] required for the boat to reach the other edge of the river.
\[T = 2t\]
Substitute \[0.25\,{\text{h}}\] for \[t\] in the above equation.
\[T = 2\left( {0.25\,{\text{h}}} \right)\]
\[ \Rightarrow T = 0.5\,{\text{h}}\]
\[ \Rightarrow T = \left( {0.5\,{\text{h}}} \right)\left( {\dfrac{{60\,{\text{min}}}}{{1\,{\text{h}}}}} \right)\]
\[ \therefore T = 30\,{\text{min}}\]
Therefore, the time required for the boat for one round trip is \[30\,{\text{min}}\].
Hence, the correct option is D.
Note: The students should not forget to determine the speed of boat perpendicular to flow of the river because the given speed of the boat relative to water will not give the minimum time required for the boat to complete one round trip in the river. Also, the students should not forget to multiply the determined time by 2.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life
Can anyone list 10 advantages and disadvantages of friction