Answer
Verified
468.9k+ views
Hint: Whenever the boat is traveling upstream the then equivalent speed of the boat will be calculated by taking the difference of the speed of the boat and speed of the stream and if it is the case of upstream then the equivalent speed of the boat will be the sum of the speed of boat and stream. The formula to calculate time is ${\text{Time}} = \dfrac{{{\text{Distance}}}}{{{\text{Speed}}}}$.
Complete step by step answer:
Let, the speed of the stream be x.
It is given that the speed of the boat in the still water is 10 mph.
When the boat is traveling in the upstream, then it has to travel against the stream, so the speed of the boat will be the difference of boat in still water and speed of the stream, i.e., $10 - x$.
Similarly, when the boat is traveling in the downstream, then it has to travel with the stream, so the speed of the boat will be the sum of the speed of the boat in still water and speed of the stream, i.e., $10 + x$.
As, ${\text{Time}} = \dfrac{{{\text{Distance}}}}{{{\text{Speed}}}}$.
So, the time taken for the boat to travel upstream will be equal to $\dfrac{{36}}{{10 - x}}$.
Similarly, the time taken for the boat to travel downstream will be equal to $\dfrac{{36}}{{10 + x}}$.
It is given the time taken by the boat to travel upstream is 90 minutes more than to travel downstream.
Now, convert 90 minutes in hours by dividing it by 60, as in one hour there are 60 minutes,
so $\dfrac{{90}}{{60}} = \dfrac{3}{2}$ hours.
As the difference between time traveled by boat during upstream and downstream is $\dfrac{3}{2}$ hours.
Therefore,
$\dfrac{{36}}{{10 - x}} - \dfrac{{36}}{{10 + x}} = \dfrac{3}{2}$, now find the value of x by solving this equation.
$
\dfrac{{36}}{{10 - x}} - \dfrac{{36}}{{10 + x}} = \dfrac{3}{2} \\
\dfrac{{36\left( {10 + x} \right) - 36\left( {10 - x} \right)}}{{\left( {10 - x} \right)\left( {10 + x} \right)}} = \dfrac{3}{2} \\
\dfrac{{360 + 36x - 360 + 36x}}{{{{10}^2} - {x^2}}} = \dfrac{3}{2} \\
\dfrac{{72x}}{{100 - {x^2}}} = \dfrac{3}{2} \\
144x = 300 - 3{x^2} \\
3{x^2} + 144x - 300 = 0 \\
{x^2} + 48x - 100 = 0 \\
$
Now , factorize the equation ${x^2} + 48x - 100 = 0$ and find the value of x.
$
{x^2} + 48x - 100 = 0 \\
{x^2} + 50x - 2x - 100 = 0 \\
x\left( {x + 50} \right) - 2\left( {x + 50} \right) = 0 \\
\left( {x - 2} \right)\left( {x + 50} \right) = 0 \\
x = - 50,2 \\
$
As the value x cannot be negative because if we substitute this value to calculate the time taken for the boat to travel downstream will be negative and time cannot be negative.
So, the speed of the stream is 2 mph.
Therefore, option (A) is the correct answer.
Note:
This is the case of stream and boat, let the speed of the stream be some value x and use the formula of time to equate both the time taken by the boat, as it is mentioned in the question that it takes 90 minutes of more time to travel upstream than downstream, using this and formula of time the speed of stream can be calculated.
Complete step by step answer:
Let, the speed of the stream be x.
It is given that the speed of the boat in the still water is 10 mph.
When the boat is traveling in the upstream, then it has to travel against the stream, so the speed of the boat will be the difference of boat in still water and speed of the stream, i.e., $10 - x$.
Similarly, when the boat is traveling in the downstream, then it has to travel with the stream, so the speed of the boat will be the sum of the speed of the boat in still water and speed of the stream, i.e., $10 + x$.
As, ${\text{Time}} = \dfrac{{{\text{Distance}}}}{{{\text{Speed}}}}$.
So, the time taken for the boat to travel upstream will be equal to $\dfrac{{36}}{{10 - x}}$.
Similarly, the time taken for the boat to travel downstream will be equal to $\dfrac{{36}}{{10 + x}}$.
It is given the time taken by the boat to travel upstream is 90 minutes more than to travel downstream.
Now, convert 90 minutes in hours by dividing it by 60, as in one hour there are 60 minutes,
so $\dfrac{{90}}{{60}} = \dfrac{3}{2}$ hours.
As the difference between time traveled by boat during upstream and downstream is $\dfrac{3}{2}$ hours.
Therefore,
$\dfrac{{36}}{{10 - x}} - \dfrac{{36}}{{10 + x}} = \dfrac{3}{2}$, now find the value of x by solving this equation.
$
\dfrac{{36}}{{10 - x}} - \dfrac{{36}}{{10 + x}} = \dfrac{3}{2} \\
\dfrac{{36\left( {10 + x} \right) - 36\left( {10 - x} \right)}}{{\left( {10 - x} \right)\left( {10 + x} \right)}} = \dfrac{3}{2} \\
\dfrac{{360 + 36x - 360 + 36x}}{{{{10}^2} - {x^2}}} = \dfrac{3}{2} \\
\dfrac{{72x}}{{100 - {x^2}}} = \dfrac{3}{2} \\
144x = 300 - 3{x^2} \\
3{x^2} + 144x - 300 = 0 \\
{x^2} + 48x - 100 = 0 \\
$
Now , factorize the equation ${x^2} + 48x - 100 = 0$ and find the value of x.
$
{x^2} + 48x - 100 = 0 \\
{x^2} + 50x - 2x - 100 = 0 \\
x\left( {x + 50} \right) - 2\left( {x + 50} \right) = 0 \\
\left( {x - 2} \right)\left( {x + 50} \right) = 0 \\
x = - 50,2 \\
$
As the value x cannot be negative because if we substitute this value to calculate the time taken for the boat to travel downstream will be negative and time cannot be negative.
So, the speed of the stream is 2 mph.
Therefore, option (A) is the correct answer.
Note:
This is the case of stream and boat, let the speed of the stream be some value x and use the formula of time to equate both the time taken by the boat, as it is mentioned in the question that it takes 90 minutes of more time to travel upstream than downstream, using this and formula of time the speed of stream can be calculated.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE