
A body weighs 72 N on the surface of the earth. What is the gravitational force on it due to the Earth at a height equal to half the radius of the earth?
A.)16 N
B.)28 N
C.)32 N
D.)72 N
Answer
438.9k+ views
Hint: A good approach would be to determine the acceleration due to gravity from the universal law of gravitation for when the body is at the surface of the earth, and then find the acceleration due to gravity at a height h using the same law but in terms of g at surface.
Formula used:
Acceleration due to gravity where G is the gravitational constant. M is the mass of the body exerting force and R is the distance to the body.
Force acting on a body due to gravitational acceleration where m is the mass of the body and g is the acceleration due to gravity
Complete answer:
Let us begin by looking at the first scenario:
On the surface of the Earth, i.e., at a height R (where R is the radius of the Earth), .
From the universal law of gravitation we get:
Now, if the body is raised to a height of then the acceleration due to gravity at that height will be:
Therefore, the gravitational force acting on the body at height h is found to be:
Hence, the correct choice would be 32 N.
So, the correct answer is “Option C”.
Note:
Remember that the weight of the body is basically the gravitational force acting on it, which is why it is safe to assume mg = 72 N.
When a body is raised to a certain height from the surface of the earth, do not forget to include the radius of the earth to the distance since the point of origin of this acceleration due to gravity is assumed to be the planetary centre. However, when where R is the earth radius then you can use the approximation : .
Formula used:
Acceleration due to gravity
Force acting on a body due to gravitational acceleration
Complete answer:
Let us begin by looking at the first scenario:
On the surface of the Earth, i.e., at a height R (where R is the radius of the Earth),
From the universal law of gravitation we get:
Now, if the body is raised to a height of
Therefore, the gravitational force acting on the body at height h is found to be:
Hence, the correct choice would be 32 N.
So, the correct answer is “Option C”.
Note:
Remember that the weight of the body is basically the gravitational force acting on it, which is why it is safe to assume mg = 72 N.
When a body is raised to a certain height from the surface of the earth, do not forget to include the radius of the earth to the distance since the point of origin of this acceleration due to gravity is assumed to be the planetary centre. However, when
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE
