Answer
Verified
432.6k+ views
Hint: In this question, we have the square base box and volume is given. For finding the dimension of the box at minimum amount of material used, we used the two formulas. First is the volume formula and second is the surface area formula.
Complete step by step answer:
In the question, the data is given as below.
The volume of the square base box, which is denoted by the \[V\] is given as.
\[V = 32000\;{\text{c}}{{\text{m}}^{\text{3}}}\]
Let's assume that the length and breadth of a square base box are \[x\;{\text{by}}\;x\] at the top and the height of the square base box is\[h\].
Then the volume of the box is written as below.
\[ \Rightarrow V = {x^2}h\]
Then put the value of volume in the above.
Hence,
\[ \Rightarrow {x^2}h = 32000\]
\[ \Rightarrow h = \dfrac{{32000}}{{{x^2}}}............\left( 1 \right)\]
After that, we come to the surface area of the square base box.
Let’s, \[S\] is the surface area of the square base box and written as below.
\[ \Rightarrow S = area\;of\;the\;base + total\;area\;of\;the\;4\;sides\]
Then,
\[ \Rightarrow S = {x^2} + 4xh\]
Then, put the value of \[h\] from the equation \[\left( 1 \right)\]. Hence the above equation is written as below.
\[ \Rightarrow S = {x^2} + 4x\left( {\dfrac{{32000}}{{{x^2}}}} \right)\]
After calculating, we can write the above equation as below.
\[
S = {x^2} + 4\left( {\dfrac{{32000}}{x}} \right) \\
\Rightarrow S = {x^2} + \dfrac{{128000}}{x}........\left( 2 \right) \\
\]
We want to minimize the surface area, and then we write the first derivative.
\[{S^{'}} = 2x - \dfrac{{128000}}{{{x^2}}} = \dfrac{{2{x^3} - 128000}}{{{x^2}}}\]
When, \[{S^{'}} = 0\]
Then,
\[ \Rightarrow \dfrac{{2{x^3} - 128000}}{{{x^2}}} = 0\]
We can calculate to find the value\[x\].
\[
{x^3} = 64000 \\
\Rightarrow x = 40 \\
\]
Then, we can second derivative of surface area verify for the surface area minimum at the critical value of \[x\].
Then,
\[ \Rightarrow {S^{''}} = 2 + \dfrac{{256000}}{{{x^3}}}\]
When we put the value of \[x\] in the second derivative, then the result is positive.
Then, we find the height of the square base box.
Put the value of \[x\] in equation \[\left( 1 \right)\].
\[
h = \dfrac{{32000}}{{{{\left( {40} \right)}^2}}} \\
\therefore h = 20 \\
\]
Therefore, the length and breadth of the square base box are \[{\text{40}}\;{\text{cm}}\;{\text{by}}\;{\text{40}}\;{\text{cm}}\] and the height of the square base box is \[{\text{20}}\;{\text{cm}}\] for the minimum amount of material used.
Note:
If you want to find the dimensions of a square base box. Then you can use the volume and the surface area formula for calculating the dimension of a square base box. And the formula is given as below.
\[V = {x^2}h\] and \[S = {x^2} + 4xh\].
Complete step by step answer:
In the question, the data is given as below.
The volume of the square base box, which is denoted by the \[V\] is given as.
\[V = 32000\;{\text{c}}{{\text{m}}^{\text{3}}}\]
Let's assume that the length and breadth of a square base box are \[x\;{\text{by}}\;x\] at the top and the height of the square base box is\[h\].
Then the volume of the box is written as below.
\[ \Rightarrow V = {x^2}h\]
Then put the value of volume in the above.
Hence,
\[ \Rightarrow {x^2}h = 32000\]
\[ \Rightarrow h = \dfrac{{32000}}{{{x^2}}}............\left( 1 \right)\]
After that, we come to the surface area of the square base box.
Let’s, \[S\] is the surface area of the square base box and written as below.
\[ \Rightarrow S = area\;of\;the\;base + total\;area\;of\;the\;4\;sides\]
Then,
\[ \Rightarrow S = {x^2} + 4xh\]
Then, put the value of \[h\] from the equation \[\left( 1 \right)\]. Hence the above equation is written as below.
\[ \Rightarrow S = {x^2} + 4x\left( {\dfrac{{32000}}{{{x^2}}}} \right)\]
After calculating, we can write the above equation as below.
\[
S = {x^2} + 4\left( {\dfrac{{32000}}{x}} \right) \\
\Rightarrow S = {x^2} + \dfrac{{128000}}{x}........\left( 2 \right) \\
\]
We want to minimize the surface area, and then we write the first derivative.
\[{S^{'}} = 2x - \dfrac{{128000}}{{{x^2}}} = \dfrac{{2{x^3} - 128000}}{{{x^2}}}\]
When, \[{S^{'}} = 0\]
Then,
\[ \Rightarrow \dfrac{{2{x^3} - 128000}}{{{x^2}}} = 0\]
We can calculate to find the value\[x\].
\[
{x^3} = 64000 \\
\Rightarrow x = 40 \\
\]
Then, we can second derivative of surface area verify for the surface area minimum at the critical value of \[x\].
Then,
\[ \Rightarrow {S^{''}} = 2 + \dfrac{{256000}}{{{x^3}}}\]
When we put the value of \[x\] in the second derivative, then the result is positive.
Then, we find the height of the square base box.
Put the value of \[x\] in equation \[\left( 1 \right)\].
\[
h = \dfrac{{32000}}{{{{\left( {40} \right)}^2}}} \\
\therefore h = 20 \\
\]
Therefore, the length and breadth of the square base box are \[{\text{40}}\;{\text{cm}}\;{\text{by}}\;{\text{40}}\;{\text{cm}}\] and the height of the square base box is \[{\text{20}}\;{\text{cm}}\] for the minimum amount of material used.
Note:
If you want to find the dimensions of a square base box. Then you can use the volume and the surface area formula for calculating the dimension of a square base box. And the formula is given as below.
\[V = {x^2}h\] and \[S = {x^2} + 4xh\].
Recently Updated Pages
Points A and B are situated along the extended axis class 12 physics JEE_Main
Two identical pn junctions may be connected in series class 12 physics JEE_Main
A piece of copper and another of germanium are cooled class 12 physics JEE_Main
A piece of semiconductor is connected in series in class 12 phy sec 1 JEE_Main
In a pn junction diode not connected to any circui class 12 physics JEE_Main
The width of depletion region in a pn junction is 500 class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE