Answer
Verified
396.3k+ views
Hint: In the question they have given maximum height and range of projection for the body which is there in projectile motion. By using the given data we will find the angle of projection then substituting in the equation of range of projection we will find the initial velocity of the body.
Formulas used:
Maximum height, ${H_{\max }} = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}$ ……………..$\left( 1 \right)$
Range of projection, $R = \dfrac{{{u^2}\sin 2\theta }}{g}$ ……………..$\left( 2 \right)$
Complete step-by-step solution:
Given:
Range of projection, $R = 78.4m + 78.4m = 156.8m$
Maximum height , ${H_{\max }} = 39.2m$
Take, acceleration due to gravity , $g = 9.8m{s^{ - 2}}$
Using equation $\left( 1 \right)$
That is, ${H_{\max }} = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}$
\[39.2 = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2 \times g}}\] …………… $\left( 3 \right)$
Using equation $\left( 2 \right)$
That is, $R = \dfrac{{{u^2}\sin 2\theta }}{g}$
$156.8 = \dfrac{{{u^2}\sin 2\theta }}{g}$ …………………$\left( 4 \right)$
$156.8 = \dfrac{{{u^2}2\sin \theta \cos \theta }}{g}$ ……………. $\left( 5 \right)$ $\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
Divide equation $\left( 3 \right)$ and equation $\left( 5 \right)$
$\dfrac{{39.2}}{{156.8}} = \dfrac{{\dfrac{{{u^2}{{\sin }^2}\theta }}{{2 \times g}}}}{{\dfrac{{{u^2}2\sin \theta \cos \theta }}{g}}}$
$4 = \dfrac{{\dfrac{{\sin \theta }}{2}}}{{\dfrac{{2\cos \theta }}{1}}}$
Therefore, $\tan \theta = \dfrac{4}{4}$
$\tan \theta = 1$
$\theta = {\tan ^{ - 1}}1$
$\theta = {45^ \circ }$
Substituting in equation $\left( 4 \right)$ we get
$156.8 = \dfrac{{{u^2}\sin 90}}{{9.8}}$
$u = \sqrt {1536.64} $
Therefore, $u = 39.2m{s^{ - 1}}$
Note: Projectile motion is the form of motion experienced by a launched body that is motion of a body which is projected or thrown into the air with the angle made by the object with respect to the ground or x-axis.
Formulas used:
Maximum height, ${H_{\max }} = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}$ ……………..$\left( 1 \right)$
Range of projection, $R = \dfrac{{{u^2}\sin 2\theta }}{g}$ ……………..$\left( 2 \right)$
Complete step-by-step solution:
Given:
Range of projection, $R = 78.4m + 78.4m = 156.8m$
Maximum height , ${H_{\max }} = 39.2m$
Take, acceleration due to gravity , $g = 9.8m{s^{ - 2}}$
Using equation $\left( 1 \right)$
That is, ${H_{\max }} = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}$
\[39.2 = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2 \times g}}\] …………… $\left( 3 \right)$
Using equation $\left( 2 \right)$
That is, $R = \dfrac{{{u^2}\sin 2\theta }}{g}$
$156.8 = \dfrac{{{u^2}\sin 2\theta }}{g}$ …………………$\left( 4 \right)$
$156.8 = \dfrac{{{u^2}2\sin \theta \cos \theta }}{g}$ ……………. $\left( 5 \right)$ $\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
Divide equation $\left( 3 \right)$ and equation $\left( 5 \right)$
$\dfrac{{39.2}}{{156.8}} = \dfrac{{\dfrac{{{u^2}{{\sin }^2}\theta }}{{2 \times g}}}}{{\dfrac{{{u^2}2\sin \theta \cos \theta }}{g}}}$
$4 = \dfrac{{\dfrac{{\sin \theta }}{2}}}{{\dfrac{{2\cos \theta }}{1}}}$
Therefore, $\tan \theta = \dfrac{4}{4}$
$\tan \theta = 1$
$\theta = {\tan ^{ - 1}}1$
$\theta = {45^ \circ }$
Substituting in equation $\left( 4 \right)$ we get
$156.8 = \dfrac{{{u^2}\sin 90}}{{9.8}}$
$u = \sqrt {1536.64} $
Therefore, $u = 39.2m{s^{ - 1}}$
Note: Projectile motion is the form of motion experienced by a launched body that is motion of a body which is projected or thrown into the air with the angle made by the object with respect to the ground or x-axis.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE