Answer
Verified
497.4k+ views
Hint: Draw a diagram to clearly analyse the situation. Two right angled triangles will be formed for the two end points of the bridge. Calculate the height of the bridge above the top of the temple using one of the triangles and then put this value for another triangle.
Complete step-by-step answer:
Consider the above figure. A and B are two end points of the bridge.
The length of the bridge is given in the question as 800 meters. So, we have:
$ \Rightarrow AB = 800m .....(i)$
Next, C is the position of the temple. Angles of depression on the top of the temple from the end points of the temple are given as ${30^ \circ }$ and ${60^ \circ }$. So, we get:
$ \Rightarrow \angle CBA = {30^ \circ }{\text{ and }}\angle CAB = {60^ \circ }$
We have to calculate the height of the bridge above the top of the temple. From the figure, this height is CD. So, we have to calculate the length of CD. Let its value is h.
$ \Rightarrow CD = h .....(ii)$
Now, let $AD = x .....(iii)$
As we can see from the figure, $AD + DB = AB$
And from equation $(i)$, $AB = 800m$. So we have:
$
\Rightarrow AD + DB = AB, \\
\Rightarrow x + DB = 800, \\
\Rightarrow DB = 800 - x .....(iv) \\
$
Next, consider $\Delta ADC$,
$ \Rightarrow \tan {60^ \circ } = \dfrac{{CD}}{{AD}},$
We know that $\tan {60^ \circ } = \sqrt 3 $ and from equation $(ii)$ and $(iii)$, $CD = h$ and $AD = x$. Putting these values in above equation:
$
\Rightarrow \sqrt 3 = \dfrac{h}{x}, \\
\Rightarrow x = \dfrac{h}{{\sqrt 3 }} .....(v) \\
$
Now consider $\Delta BDC$,
$ \Rightarrow \tan {30^ \circ } = \dfrac{{CD}}{{BD}}$
We know that $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$ and from equation $(ii)$ and $(iii)$, $CD = h$ and $DB = 800 - x$. Putting these values in above equation:
$
\Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{h}{{800 - x}}, \\
\Rightarrow 800 - x = h\sqrt 3 \\
$
Putting $x = \dfrac{h}{{\sqrt 3 }}$ from equation $(v)$, we’ll get:
$
\Rightarrow 800 - \dfrac{h}{{\sqrt 3 }} = h\sqrt 3 , \\
\Rightarrow h\left( {\sqrt 3 + \dfrac{1}{{\sqrt 3 }}} \right) = 800, \\
\Rightarrow h\left( {\dfrac{{3 + 1}}{{\sqrt 3 }}} \right) = 800, \\
\Rightarrow h = \dfrac{{800\sqrt 3 }}{4}, \\
\Rightarrow h = 200\sqrt 3 \\
$
Thus, the height of the bridge above the top of the temple is $200\sqrt 3 $ meters.
Note: Whenever angle of elevation or angle of depression is given, we use to analyse the scenario using a right angled triangle with the help of suitable trigonometric ratios depending upon what is given and what is asked in the question.
Complete step-by-step answer:
Consider the above figure. A and B are two end points of the bridge.
The length of the bridge is given in the question as 800 meters. So, we have:
$ \Rightarrow AB = 800m .....(i)$
Next, C is the position of the temple. Angles of depression on the top of the temple from the end points of the temple are given as ${30^ \circ }$ and ${60^ \circ }$. So, we get:
$ \Rightarrow \angle CBA = {30^ \circ }{\text{ and }}\angle CAB = {60^ \circ }$
We have to calculate the height of the bridge above the top of the temple. From the figure, this height is CD. So, we have to calculate the length of CD. Let its value is h.
$ \Rightarrow CD = h .....(ii)$
Now, let $AD = x .....(iii)$
As we can see from the figure, $AD + DB = AB$
And from equation $(i)$, $AB = 800m$. So we have:
$
\Rightarrow AD + DB = AB, \\
\Rightarrow x + DB = 800, \\
\Rightarrow DB = 800 - x .....(iv) \\
$
Next, consider $\Delta ADC$,
$ \Rightarrow \tan {60^ \circ } = \dfrac{{CD}}{{AD}},$
We know that $\tan {60^ \circ } = \sqrt 3 $ and from equation $(ii)$ and $(iii)$, $CD = h$ and $AD = x$. Putting these values in above equation:
$
\Rightarrow \sqrt 3 = \dfrac{h}{x}, \\
\Rightarrow x = \dfrac{h}{{\sqrt 3 }} .....(v) \\
$
Now consider $\Delta BDC$,
$ \Rightarrow \tan {30^ \circ } = \dfrac{{CD}}{{BD}}$
We know that $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$ and from equation $(ii)$ and $(iii)$, $CD = h$ and $DB = 800 - x$. Putting these values in above equation:
$
\Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{h}{{800 - x}}, \\
\Rightarrow 800 - x = h\sqrt 3 \\
$
Putting $x = \dfrac{h}{{\sqrt 3 }}$ from equation $(v)$, we’ll get:
$
\Rightarrow 800 - \dfrac{h}{{\sqrt 3 }} = h\sqrt 3 , \\
\Rightarrow h\left( {\sqrt 3 + \dfrac{1}{{\sqrt 3 }}} \right) = 800, \\
\Rightarrow h\left( {\dfrac{{3 + 1}}{{\sqrt 3 }}} \right) = 800, \\
\Rightarrow h = \dfrac{{800\sqrt 3 }}{4}, \\
\Rightarrow h = 200\sqrt 3 \\
$
Thus, the height of the bridge above the top of the temple is $200\sqrt 3 $ meters.
Note: Whenever angle of elevation or angle of depression is given, we use to analyse the scenario using a right angled triangle with the help of suitable trigonometric ratios depending upon what is given and what is asked in the question.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE