Answer
Verified
464.4k+ views
Hint: First, let the money do the brother and sister have and make the linear equation by using the given condition in the question. Solve the linear equation by any method substitution or elimination.
Complete step by step answer:
Let the brother have $Rs.x$ and sister have $Rs.y$.
We have to evaluate the value of $x$ and $y$.
To evaluate these values, we have two conditions given in the question. We will discuss one by one.
Condition-$1$
Brother asks his sister for $Rs100$ so that he can be $3$times as rich as her sister. If the sister gives him $Rs100$, the money left with her is $y - 100$and now brother has the money $x + 100$ and he is now $3$times as rich as her sister.
Write the condition in the mathematical form and solve.
$
x + 100 = 3(y - 100) \\
\Rightarrow x + 100 = 3y - 300 \\
\Rightarrow x = 3y - 300.........(1) \\
$
Condition-$2$
Sister tells her brother to give her $Rs400$, so that she can be $7$times as rich as her brother. If the brother gives her $Rs400$, the money left with him is $x - 400$and now sister have the money $y + 400$ and she is now $7$times as rich as his brother.
Write the condition in the mathematical form and solve.
$
y + 400 = 7(x - 400) \\
\Rightarrow y + 400 = 7x - 2800 \\
\Rightarrow y = 7x - 3200........(2) \\
$
Substitute the value of $x$ from equation $(1)$ to equation $(2)$.
$
\therefore y = 7(3y - 400) - 3200 \\
\Rightarrow y = 21y - 2800 - 3200 \\
\Rightarrow 20y = 6000 \\
\Rightarrow y = 300 \\
$
Substitute the value of $y$ in equation $(1)$
$
\therefore x = 3(300) - 400 \\
\Rightarrow x = 900 - 400 \\
\Rightarrow x = 500 \\
$
Therefore, brother and sister have $Rs.500$ and $Rs.300$ respectively.
Note: We can also solve the linear equation by elimination method.
The linear equation in the condition-$1$ is,
$
x = 3y - 400 \\
x - 3y = - 400....(3) \\
$
The linear equation in the condition-$2$ is,
$
y + 400 = 7x - 2800 \\
7x - y = 3200.....(4) \\
$
Multiply equation $(4)$ by $3$ and subtract from equation $(3)$.
$
\therefore x - 3y - 3(7x - y) = - 400 - 3(3200) \\
\Rightarrow x - 21x = - 400 - 9600 \\
\Rightarrow 20x = 10000 \\
\Rightarrow x = 500 \\
$
Similarly, we can find the value of $y$by eliminating $x$ from both the equations.
Complete step by step answer:
Let the brother have $Rs.x$ and sister have $Rs.y$.
We have to evaluate the value of $x$ and $y$.
To evaluate these values, we have two conditions given in the question. We will discuss one by one.
Condition-$1$
Brother asks his sister for $Rs100$ so that he can be $3$times as rich as her sister. If the sister gives him $Rs100$, the money left with her is $y - 100$and now brother has the money $x + 100$ and he is now $3$times as rich as her sister.
Write the condition in the mathematical form and solve.
$
x + 100 = 3(y - 100) \\
\Rightarrow x + 100 = 3y - 300 \\
\Rightarrow x = 3y - 300.........(1) \\
$
Condition-$2$
Sister tells her brother to give her $Rs400$, so that she can be $7$times as rich as her brother. If the brother gives her $Rs400$, the money left with him is $x - 400$and now sister have the money $y + 400$ and she is now $7$times as rich as his brother.
Write the condition in the mathematical form and solve.
$
y + 400 = 7(x - 400) \\
\Rightarrow y + 400 = 7x - 2800 \\
\Rightarrow y = 7x - 3200........(2) \\
$
Substitute the value of $x$ from equation $(1)$ to equation $(2)$.
$
\therefore y = 7(3y - 400) - 3200 \\
\Rightarrow y = 21y - 2800 - 3200 \\
\Rightarrow 20y = 6000 \\
\Rightarrow y = 300 \\
$
Substitute the value of $y$ in equation $(1)$
$
\therefore x = 3(300) - 400 \\
\Rightarrow x = 900 - 400 \\
\Rightarrow x = 500 \\
$
Therefore, brother and sister have $Rs.500$ and $Rs.300$ respectively.
Note: We can also solve the linear equation by elimination method.
The linear equation in the condition-$1$ is,
$
x = 3y - 400 \\
x - 3y = - 400....(3) \\
$
The linear equation in the condition-$2$ is,
$
y + 400 = 7x - 2800 \\
7x - y = 3200.....(4) \\
$
Multiply equation $(4)$ by $3$ and subtract from equation $(3)$.
$
\therefore x - 3y - 3(7x - y) = - 400 - 3(3200) \\
\Rightarrow x - 21x = - 400 - 9600 \\
\Rightarrow 20x = 10000 \\
\Rightarrow x = 500 \\
$
Similarly, we can find the value of $y$by eliminating $x$ from both the equations.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE