Answer
Verified
460.8k+ views
Hint: Firstly we find the slant height. After that we will substitute that value in the CSA and TSA formula to find the $CSA$ & $TSA$.
Formula used: Using these formulas we will find the curved and total surface area of the given shape.
The curved surface area of the frustum is $CSA$ = \[\pi (R + r)s = \pi (R + r)\sqrt {{{(R - r)}^2} + {h^2}} \]
And the total surface area is $TSA$ = \[\pi (R + r)s + \pi {r^2} + \pi {R^2} = \pi (R + r)\sqrt {{{(R - r)}^2} + {h^2}} + \pi ({r^2} + {R^2})\]
Complete step-by-step answer:
Let us consider, $R$, $r$, $s$ & $h$ be the radius of the lower base, radius of the upper base, the slant height and the perpendicular height of the frustum.
It is given that a bucket is in the shape of a frustum with the top and bottom circles of radii \[15\] cm and \[10\] cm and its depth is \[12\] cm. We have to find its curved surface area and total surface area.
Now, substitute, \[R\] = 15, \[r\] = 10 and \[h\] = 12 in lateral surface area we get,
The lateral surface area \[CSA\] = \[\pi (15 + 10)\sqrt {{{(15 - 10)}^2} + {{12}^2}} \] ${cm^2}$
By simplifying the squares and square roots we get,
The lateral surface area \[CSA\] = \[\pi \times 25 \times 13\] ${cm^2}$
And on further simplifications we get,
The lateral surface area of the bucket \[CSA\] = \[ 325 \pi \] ${cm^2}$
Again, let us substitute, \[R\] = 15, \[r\] = 10 and \[h\] = 12 in total surface area we get,
The total surface area $TSA$ = \[\pi (15 + 10)\sqrt {{{(15 - 10)}^2} + {{12}^2}} + \pi ({10^2} + {15^2})\] ${cm^2}$
By simplifying the squares and square roots we get,
The total surface area $TSA$ = \[\pi \times 25 \times 13 + 325\pi \] ${cm^2}$
And on further simplification we get,
The total surface area of the bucket $TSA$ = \[650 \pi \] ${cm^2}$
Hence, the curved surface area is \[325\pi \] ${cm^2}$ and total surface area is \[650\pi \] ${cm^2}$
Note: The frustum is the sliced part of a right circular cone. If we eliminate the top corner part of the right circular cone we get a frustum.
Formula used: Using these formulas we will find the curved and total surface area of the given shape.
The curved surface area of the frustum is $CSA$ = \[\pi (R + r)s = \pi (R + r)\sqrt {{{(R - r)}^2} + {h^2}} \]
And the total surface area is $TSA$ = \[\pi (R + r)s + \pi {r^2} + \pi {R^2} = \pi (R + r)\sqrt {{{(R - r)}^2} + {h^2}} + \pi ({r^2} + {R^2})\]
Complete step-by-step answer:
Let us consider, $R$, $r$, $s$ & $h$ be the radius of the lower base, radius of the upper base, the slant height and the perpendicular height of the frustum.
It is given that a bucket is in the shape of a frustum with the top and bottom circles of radii \[15\] cm and \[10\] cm and its depth is \[12\] cm. We have to find its curved surface area and total surface area.
Now, substitute, \[R\] = 15, \[r\] = 10 and \[h\] = 12 in lateral surface area we get,
The lateral surface area \[CSA\] = \[\pi (15 + 10)\sqrt {{{(15 - 10)}^2} + {{12}^2}} \] ${cm^2}$
By simplifying the squares and square roots we get,
The lateral surface area \[CSA\] = \[\pi \times 25 \times 13\] ${cm^2}$
And on further simplifications we get,
The lateral surface area of the bucket \[CSA\] = \[ 325 \pi \] ${cm^2}$
Again, let us substitute, \[R\] = 15, \[r\] = 10 and \[h\] = 12 in total surface area we get,
The total surface area $TSA$ = \[\pi (15 + 10)\sqrt {{{(15 - 10)}^2} + {{12}^2}} + \pi ({10^2} + {15^2})\] ${cm^2}$
By simplifying the squares and square roots we get,
The total surface area $TSA$ = \[\pi \times 25 \times 13 + 325\pi \] ${cm^2}$
And on further simplification we get,
The total surface area of the bucket $TSA$ = \[650 \pi \] ${cm^2}$
Hence, the curved surface area is \[325\pi \] ${cm^2}$ and total surface area is \[650\pi \] ${cm^2}$
Note: The frustum is the sliced part of a right circular cone. If we eliminate the top corner part of the right circular cone we get a frustum.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE