Answer
Verified
471.3k+ views
Hint: We are given a bucket in the form of a frustum. We have the upper and lower diameter. We first have to find the radius and then find the curved surface area of the frustum as \[S=\pi \left( R+r \right)l\] where l is the slant height. We can find the slant height (l) using the formula \[l=\sqrt{{{h}^{2}}+{{\left( R-r \right)}^{2}}}\] and then we will find the area and then the total cost by multiplying the area by cost per \[c{{m}^{2}}.\]
Complete step-by-step answer:
We are given a bucket in the shape of the frustum with the height as 24 cm while the upper circular part that is the diameter is 30 cm while the lower circular part diameter is 10 cm.
So, at first, we will find the radius of the upper and lower circular end and then find the surface area. We are given that the upper diameter is 30cm. Therefore, we know that
\[R=\dfrac{D}{2}\]
Substituting the value of D in the above formula, we get,
\[\Rightarrow R=\dfrac{30}{2}=15cm\]
Therefore, the upper radius, R = 15 cm.
Similarly, the lower diameter is 10 cm. So, we know that
\[r=\dfrac{d}{2}\]
\[\Rightarrow r=\dfrac{10}{2}=5cm\]
Therefore, the lower radius = 5 cm.
So, we have the following details about the frustum.
Height (h) = 24 cm
Upper Circular Radius (R) = 15 cm
Lower Circular Radius (r) = 5 cm
To find the cost of the metal sheet, we have to find the total area of the metal sheet. So,
The total area of the metal sheet = Curved Surface Area of the frustum + Area of the lower circle
\[=\pi \left( r+R \right)l+\pi {{r}^{2}}\]
First, we will find l and then use the above formula. We know that the slant height (l) of the frustum is given as,
\[l=\sqrt{{{h}^{2}}+{{\left( R-r \right)}^{2}}}\]
Here, h = 24, R = 15, r = 5. So,
\[l=\sqrt{{{\left( 24 \right)}^{2}}+{{\left( 15-5 \right)}^{2}}}\]
\[\Rightarrow l=\sqrt{{{24}^{2}}+{{10}^{2}}}\]
\[\Rightarrow l=\sqrt{576+100}\]
\[\Rightarrow l=\sqrt{676}\]
\[\Rightarrow l=\sqrt{{{26}^{2}}}\]
Therefore, we get l = 26 cm.
Now, we have all the required details to find the total area of the metal sheet.
\[\Rightarrow \text{Total Area}=3.14\left( 15+5 \right)26+3.14\times 25\]
\[\Rightarrow \text{Total Area}=3.14\times 20\times 26+3.14\times 25\]
After solving, we will get,
\[\Rightarrow \text{Total Area}=1711.3c{{m}^{2}}\]
Now, we are given that \[100c{{m}^{2}}\] of the metal cost Rs. 10 that means,
\[100c{{m}^{2}}=Rs.10\]
Using the unitary method, we will get,
\[1c{{m}^{2}}=\dfrac{Rs.10}{100}\]
\[1c{{m}^{2}}=\dfrac{Rs.1}{10}\]
Now, we will find the cost of \[1711.3c{{m}^{2}}\] metal sheet.
\[\Rightarrow 1711.3c{{m}^{2}}=\dfrac{1}{10}\times 1711.3\]\[\Rightarrow 1711.3c{{m}^{2}}=Rs.171.13\]
So, we get the cost of preparing the bucket with the metal sheet as Rs. 171.13.
Note: The curved surface area of the frustum has slant height in its formula. So, students should not take H as l and solve the solution. It will lead to the wrong solution. First students need to find l using the formula \[l=\sqrt{{{h}^{2}}+{{\left( R-r \right)}^{2}}}\] and then use that l to solve the frustum. The conversion of rate into cost per \[c{{m}^{2}}\] is necessary, then only we can find the cost of \[1711.3c{{m}^{2}}\] of the metal.
Complete step-by-step answer:
We are given a bucket in the shape of the frustum with the height as 24 cm while the upper circular part that is the diameter is 30 cm while the lower circular part diameter is 10 cm.
So, at first, we will find the radius of the upper and lower circular end and then find the surface area. We are given that the upper diameter is 30cm. Therefore, we know that
\[R=\dfrac{D}{2}\]
Substituting the value of D in the above formula, we get,
\[\Rightarrow R=\dfrac{30}{2}=15cm\]
Therefore, the upper radius, R = 15 cm.
Similarly, the lower diameter is 10 cm. So, we know that
\[r=\dfrac{d}{2}\]
\[\Rightarrow r=\dfrac{10}{2}=5cm\]
Therefore, the lower radius = 5 cm.
So, we have the following details about the frustum.
Height (h) = 24 cm
Upper Circular Radius (R) = 15 cm
Lower Circular Radius (r) = 5 cm
To find the cost of the metal sheet, we have to find the total area of the metal sheet. So,
The total area of the metal sheet = Curved Surface Area of the frustum + Area of the lower circle
\[=\pi \left( r+R \right)l+\pi {{r}^{2}}\]
First, we will find l and then use the above formula. We know that the slant height (l) of the frustum is given as,
\[l=\sqrt{{{h}^{2}}+{{\left( R-r \right)}^{2}}}\]
Here, h = 24, R = 15, r = 5. So,
\[l=\sqrt{{{\left( 24 \right)}^{2}}+{{\left( 15-5 \right)}^{2}}}\]
\[\Rightarrow l=\sqrt{{{24}^{2}}+{{10}^{2}}}\]
\[\Rightarrow l=\sqrt{576+100}\]
\[\Rightarrow l=\sqrt{676}\]
\[\Rightarrow l=\sqrt{{{26}^{2}}}\]
Therefore, we get l = 26 cm.
Now, we have all the required details to find the total area of the metal sheet.
\[\Rightarrow \text{Total Area}=3.14\left( 15+5 \right)26+3.14\times 25\]
\[\Rightarrow \text{Total Area}=3.14\times 20\times 26+3.14\times 25\]
After solving, we will get,
\[\Rightarrow \text{Total Area}=1711.3c{{m}^{2}}\]
Now, we are given that \[100c{{m}^{2}}\] of the metal cost Rs. 10 that means,
\[100c{{m}^{2}}=Rs.10\]
Using the unitary method, we will get,
\[1c{{m}^{2}}=\dfrac{Rs.10}{100}\]
\[1c{{m}^{2}}=\dfrac{Rs.1}{10}\]
Now, we will find the cost of \[1711.3c{{m}^{2}}\] metal sheet.
\[\Rightarrow 1711.3c{{m}^{2}}=\dfrac{1}{10}\times 1711.3\]\[\Rightarrow 1711.3c{{m}^{2}}=Rs.171.13\]
So, we get the cost of preparing the bucket with the metal sheet as Rs. 171.13.
Note: The curved surface area of the frustum has slant height in its formula. So, students should not take H as l and solve the solution. It will lead to the wrong solution. First students need to find l using the formula \[l=\sqrt{{{h}^{2}}+{{\left( R-r \right)}^{2}}}\] and then use that l to solve the frustum. The conversion of rate into cost per \[c{{m}^{2}}\] is necessary, then only we can find the cost of \[1711.3c{{m}^{2}}\] of the metal.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE